亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高二數(shù)學(xué)教案>含有絕對(duì)值的不等式

            含有絕對(duì)值的不等式

            時(shí)間:2022-08-17 03:41:01 高二數(shù)學(xué)教案 我要投稿
            • 相關(guān)推薦

            含有絕對(duì)值的不等式

            教學(xué)目標(biāo)

              (1)掌握絕對(duì)值不等式的基本性質(zhì),在學(xué)會(huì)一般不等式的證明的基礎(chǔ)上,學(xué)會(huì)含有絕對(duì)值符號(hào)的不等式的證明方法;

             。2)通過(guò)含有絕對(duì)值符號(hào)的不等式的證明,進(jìn)一步鞏固不等式的證明中的由因?qū)Ч?zhí)要溯因等數(shù)學(xué)思想方法;

              (3)通過(guò)證明方法的探求,培養(yǎng)學(xué)生勤于思考,全面思考方法;

             。4)通過(guò)含有絕對(duì)值符號(hào)的不等式的證明,可培養(yǎng)學(xué)生辯證思維的方法和能力,以及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神。


            教學(xué)建議

            一、知識(shí)結(jié)構(gòu)

            二、重點(diǎn)、難點(diǎn)分析

             、 本節(jié)重點(diǎn)是性質(zhì)定理及推論的證明.一個(gè)定理、公式的運(yùn)用固然重要,但更重要的是要充分挖掘吸收定理公式推導(dǎo)過(guò)程中所蘊(yùn)含的數(shù)學(xué)思想與方法,通過(guò)證明過(guò)程的探求,使學(xué)生理清思考脈絡(luò),培養(yǎng)學(xué)生勤于動(dòng)腦、勇于探索的精神.
              ② 教學(xué)難點(diǎn)一是性質(zhì)定理的推導(dǎo)與運(yùn)用;一是證明含有絕對(duì)值的不等式的方法選擇.在推導(dǎo)定理中進(jìn)行的恒等變換與不等變換,相對(duì)學(xué)生的思維水平是有一定難度的;證明含有絕對(duì)值的不等式的方法不外是比較法、分析法、綜合法以及簡(jiǎn)單的放縮變換,根據(jù)要證明的不等式選擇適當(dāng)?shù)淖C明方法是無(wú)疑學(xué)生學(xué)習(xí)上的難點(diǎn).

            三、教學(xué)建議

             。1)本節(jié)內(nèi)容分為兩課時(shí),第一課時(shí)為含有絕對(duì)值的不等式性質(zhì)定理的證明及簡(jiǎn)單運(yùn)用,第二課時(shí)為含有絕對(duì)值的不等式的證明舉例.
             。2)課前復(fù)習(xí)應(yīng)充分.建議復(fù)習(xí):當(dāng) 時(shí)
                   ;
                   ;

                   以及絕對(duì)值的性質(zhì):

                   ,為證明例1做準(zhǔn)備.
             。3)可先不給出含有絕對(duì)值的不等式性質(zhì)定理,提出問(wèn)題讓學(xué)生研究: 是否等于 ?大小關(guān)系如何? 是否等于 ?等等.提示學(xué)生用一些數(shù)代入計(jì)算、比較,以便歸納猜想一般結(jié)論.
              (4)不等式 的證明方法較多,也應(yīng)放手讓學(xué)生去探討.
              (5)用向量加減法的三角形法則記憶不等式及推論
             。6)本節(jié)教學(xué)既要突出教師的主導(dǎo)作用,又要強(qiáng)調(diào)學(xué)生的主體作用,課上盡量讓全體學(xué)生參與討論,由基礎(chǔ)較差的學(xué)生提出猜想,由基礎(chǔ)較好的學(xué)生幫助證明,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的團(tuán)隊(duì)精神.

             

            教學(xué)設(shè)計(jì)示例

            含有絕對(duì)值的不等式

            教學(xué)目標(biāo)

                  理解 及其兩個(gè)推論,并能應(yīng)用它證明簡(jiǎn)單含有絕對(duì)值不等式的證明問(wèn)題。

            教學(xué)重點(diǎn)難點(diǎn)

              重點(diǎn)是理解掌握定理及等號(hào)成立的條件,絕對(duì)值不等式的證明。

              難點(diǎn)是定理的推導(dǎo)過(guò)程的探索,擺脫絕對(duì)值的符號(hào),通過(guò)定理或放縮不等式。

            教學(xué)過(guò)程(adivasplayground.com)

            一、復(fù)習(xí)引入

              我們?cè)诔踔袑W(xué)過(guò)絕對(duì)值的有關(guān)概念,請(qǐng)一位同學(xué)說(shuō)說(shuō)絕對(duì)值的定義。

              當(dāng) 時(shí),則有:

              那么 的大小關(guān)系怎樣?

              這需要討論  當(dāng)

                            當(dāng)

                            當(dāng)

                            綜上可知:

              我們已學(xué)過(guò)積商絕對(duì)值的性質(zhì),哪位同學(xué)回答一下?

            .

              當(dāng) 時(shí),有: .

            二、引入新課

              由上可知,積的絕對(duì)值等于絕對(duì)值的積;商的絕對(duì)值等于絕對(duì)值的商。

              那么和差的絕對(duì)值等于絕對(duì)值的和差嗎?

            1.定理探索

              和差的絕對(duì)值不一定等于絕對(duì)值的和差,我們猜想

                   .

              怎么證明你的結(jié)論呢?

              用分析法,要證 .

              只要證

              即證

              即證 ,

              而 顯然成立,

              故

              那么怎么證 ?

              同樣可用分析法

              當(dāng) 時(shí),顯然成立,

              當(dāng) 時(shí),要證

              只要證

              即證

              而 顯然成立。

              從而證得 .

              還有別的證法嗎?(學(xué)生討論,教師提示)

              由 .

              當(dāng)我們把 看作一個(gè)整體時(shí),上式逆用 可得什么結(jié)論?

              

              能用已學(xué)過(guò)得的 證明 嗎?

              可以 表示為 .

              即 (教師有計(jì)劃地板書(shū)學(xué)生分析證明的過(guò)程)

              就是含有絕對(duì)值不等式的重要定理,即 .

              由于定理中對(duì) 兩個(gè)實(shí)數(shù)的絕對(duì)值,那么三個(gè)實(shí)數(shù)和的絕對(duì)值呢? 個(gè)實(shí)數(shù)和的絕對(duì)值呢?

            亦成立

                 

              這就是定理的一個(gè)推論,由于定理中對(duì) 沒(méi)有特殊要求,如果用 代換 會(huì)有什么結(jié)果?(請(qǐng)一名學(xué)生到黑板演)

               ,

              用 ,

              即 。

              這就是定理的推論 成立的充要條件是什么?

              那么 成立的充要條件是什么?

            .

              例1  已知 ,求證 . (由學(xué)生自行完成,請(qǐng)學(xué)生板演)

              證明:

                   

             

             

              例2  已知 ,求證 .

              證明:

                  

              點(diǎn)評(píng):這是為今后學(xué)習(xí)極限證明做準(zhǔn)備,要習(xí)慣和“配湊”的方法。

              例3  求證 .

              證法一:(直接利用性質(zhì)定理)在 時(shí),顯然成立.

              當(dāng) 時(shí),左邊

              

               .

              證法二:(利用函數(shù)的單調(diào)性)研究函數(shù) 時(shí)的單調(diào)性。

              設(shè) ,

               , 時(shí)是遞增的.

              又 ,將 , 分別作為 ,則有

               (下略)

              證法三:(分析法)原不等式等價(jià)于 ,

              只需證 ,

              即證

              又 ,

               顯然成立.

               原不等式獲證。

              還可以用分析法證得 ,然后利用放縮法證得結(jié)果。

            三、隨堂練習(xí)

              1.①已知 ,求證 .

                ②已知 求證 .

              2.已知   求證:

              、 ;

              、 .

              3.求證 .

              答案:1. 2. 略

              3. 同號(hào) 

            四、小結(jié)

                  1.定理 . 把 、 、 看作是三角形三邊,很象三角形兩邊之和大于第三邊,兩邊之差小于第三邊,這樣理解便于記憶,此定理在后面學(xué)習(xí)復(fù)數(shù)時(shí),可以推廣到比較復(fù)數(shù)的模長(zhǎng),并有其幾何意義,有時(shí)也稱(chēng)其為“三角形不等式”.

                  2.平方法能把絕對(duì)值不等式轉(zhuǎn)化為不含絕對(duì)值符號(hào)的不等式,但應(yīng)注意兩邊非負(fù)時(shí)才可平方,有些證明并不容易去掉絕對(duì)值符號(hào),需用定理 及其推論。

                 3.對(duì) 要特別重視.

            五、布置作業(yè)

              1.若 ,則不列不等式一定成立的是(  )

                 A.      B.

                 C.     D.

            2.設(shè) 為滿(mǎn)足 的實(shí)數(shù),那么(  )

               A.      B.

               C.      D.

            3.能使不等式 成立的正整數(shù) 的值是__________.

            4.求證:

             。1)

             。2) .

            5.已知 ,求證 .

            答案:1. D   2. B   3.1、2、3  

               4.   

               5.

                 =

              注:也可用分析法.

            六、板書(shū)設(shè)計(jì)

            6.5含有絕對(duì)值的不等式(一)

            1.復(fù)習(xí)

            2.定理

            推論

            例1

            例2

            例3

            課堂訓(xùn)練


            【含有絕對(duì)值的不等式】相關(guān)文章:

            初中數(shù)學(xué)絕對(duì)值教案12-30

            含有分號(hào)的句子08-23

            含有排比的句子08-23

            含有雨的詩(shī)句07-20

            含有月的詩(shī)句07-20

            含有桂花的詩(shī)句05-23

            含有哲理的句子02-09

            不等式教學(xué)反思08-24

            不等式教學(xué)反思03-26

            《不等式》教學(xué)反思04-22