亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

            八年級(jí)數(shù)學(xué)教案

            時(shí)間:2022-08-21 08:00:17 八年級(jí)數(shù)學(xué)教案 我要投稿

            八年級(jí)數(shù)學(xué)教案集合10篇

              作為一名無私奉獻(xiàn)的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學(xué)活動(dòng)。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家整理的八年級(jí)數(shù)學(xué)教案10篇,僅供參考,歡迎大家閱讀。

            八年級(jí)數(shù)學(xué)教案集合10篇

            八年級(jí)數(shù)學(xué)教案 篇1

              教學(xué)內(nèi)容和地位:

              眾數(shù)、中位數(shù)是描述一組數(shù)據(jù)的集中趨勢(shì)的兩個(gè)統(tǒng)計(jì)特征量,是幫助學(xué)生學(xué)會(huì)用數(shù)據(jù)說話的基本概念。本節(jié)課的教學(xué)內(nèi)容和現(xiàn)實(shí)生活密切相關(guān),是培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識(shí)和創(chuàng)新能力的最好素材。

              教學(xué)重點(diǎn)和難點(diǎn):

              本節(jié)課的重點(diǎn)是眾數(shù)和中位數(shù)兩概念的形成過程及兩概念的運(yùn)用。本節(jié)課的難點(diǎn)是對(duì)統(tǒng)計(jì)數(shù)據(jù)從多角度進(jìn)行全面地分析。因?yàn)槔脭?shù)據(jù)進(jìn)行分析,對(duì)剛剛接觸統(tǒng)計(jì)的學(xué)生來說,他們?cè)械恼J(rèn)知結(jié)構(gòu)中缺乏這方面的知識(shí)經(jīng)驗(yàn),所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學(xué)生突破這一知識(shí)難點(diǎn)。

              教學(xué)目標(biāo)分析:

              認(rèn)知目標(biāo):

             。1)使學(xué)生認(rèn)知眾數(shù)、中位數(shù)的意義;

             。2)會(huì)求一組數(shù)據(jù)的眾數(shù)、中位數(shù)。

              能力目標(biāo):

             。1)讓學(xué)生接觸并解決一些社會(huì)生活中的問題,為學(xué)生創(chuàng)新學(xué)數(shù)學(xué)、用數(shù)學(xué)的情境,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí)。

             。2)在問題解決的過程中,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力;

             。3)在問題分析的過程中,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作精神。

              情感目標(biāo):

              (1)通過多媒體網(wǎng)絡(luò)課件,提供適當(dāng)?shù)膯栴}情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;

             。2)在合作學(xué)習(xí)中,學(xué)會(huì)交流,相互評(píng)價(jià),提高學(xué)生的合作意識(shí)與能力。

              教學(xué)輔助:網(wǎng)絡(luò)教室、多媒體輔助網(wǎng)絡(luò)教學(xué)課件、BBS電子公告欄、學(xué)習(xí)資源庫

              教法與學(xué)法:

              根據(jù)本節(jié)課的教學(xué)內(nèi)容,主要采用了討論發(fā)現(xiàn)法。即課堂上,教師(或?qū)W生)提出適當(dāng)?shù)膯栴},通過學(xué)生與學(xué)生(或教師)之間相互交流,相互學(xué)習(xí),相互討論,在問題解決的`過程中發(fā)現(xiàn)概念的產(chǎn)生過程,體現(xiàn)“數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的過程的教學(xué)”。在教學(xué)活動(dòng)中,通過學(xué)生的自主學(xué)習(xí)來體現(xiàn)他們的主體地位,而教師是通過對(duì)學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵(lì)來體現(xiàn)自己的主導(dǎo)作用。另外,在學(xué)生合作學(xué)習(xí)的同時(shí),始終堅(jiān)持對(duì)學(xué)生進(jìn)行“學(xué)疑結(jié)合”、“學(xué)思結(jié)合”、“學(xué)用結(jié)合”的學(xué)法指導(dǎo),這對(duì)學(xué)生的主體意識(shí)的培養(yǎng)和創(chuàng)新能力的培養(yǎng)都有積極的意義。

            八年級(jí)數(shù)學(xué)教案 篇2

              教學(xué)建議

              知識(shí)結(jié)構(gòu)

              重難點(diǎn)分析

              本節(jié)的重點(diǎn)是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

              本節(jié)的難點(diǎn)是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對(duì)比有一定的難度.

              教法建議

              1. 對(duì)于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測(cè)量、論證,實(shí)際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

              2.對(duì)于定理的證明,有條件的教師可考慮利用多媒體課件來進(jìn)行演示知識(shí)的形成及證明過程,效果可能會(huì)更直接更易于理解

              教學(xué)設(shè)計(jì)示例

              一、教學(xué)目標(biāo)

              1.掌握中位線的概念和三角形中位線定理

              2.掌握定理“過三角形一邊中點(diǎn)且平行另一邊的直線平分第三邊”

              3.能夠應(yīng)用三角形中位線概念及定理進(jìn)行有關(guān)的論證和計(jì)算,進(jìn)一步提高學(xué)生的計(jì)算能力

              4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力

              5. 通過一題多解,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣

              二、教學(xué)設(shè)計(jì)

              畫圖測(cè)量,猜想討論,啟發(fā)引導(dǎo).

              三、重點(diǎn)、難點(diǎn)

              1.教學(xué)重點(diǎn):三角形中位線的概論與三角形中位線性質(zhì).

              2.教學(xué)難點(diǎn):三角形中位線定理的證明.

              四、課時(shí)安排

              1課時(shí)

              五、教具學(xué)具準(zhǔn)備

              投影儀、膠片、常用畫圖工具

              六、教學(xué)步驟

              【復(fù)習(xí)提問】

              1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

              2.說明定理的證明思路.

              3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點(diǎn),AM、CN分別交BD于點(diǎn)E、F,如何證明 ?

              分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

              4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)

              【引入新課】

              1.三角形中位線:連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形中位線.

              (結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)

              2.三角形中位線性質(zhì)

              了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).

              如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點(diǎn),可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個(gè)結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

              三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

              應(yīng)注意的兩個(gè)問題:①為便于同學(xué)對(duì)定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點(diǎn),即同一個(gè)題設(shè)下有兩個(gè)結(jié)論,第一個(gè)結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個(gè)結(jié)論是說明中位線與第三邊的.數(shù)量關(guān)系,在應(yīng)用時(shí)可根據(jù)需要來選用其中的結(jié)論(可以單獨(dú)用其中結(jié)論).②這個(gè)定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當(dāng)一個(gè)命題有多種證明方法時(shí),要選用比較簡(jiǎn)捷的方法證明.

              由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

              (l)延長(zhǎng)DE到F,使 ,連結(jié)CF,由 可得AD FC.

              (2)延長(zhǎng)DE到F,使 ,利用對(duì)角線互相平分的四邊形是平行四邊形,可得AD FC.

              (3)過點(diǎn)C作 ,與DE延長(zhǎng)線交于F,通過證 可得AD FC.

              上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

              (證明過程略)

              例 求證:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形.

              (由學(xué)生根據(jù)命題,說出已知、求證)

              已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).

              求證:四邊形EFGH是平行四邊形.‘

              分析:因?yàn)橐阎c(diǎn)分別是四邊形各邊中點(diǎn),如果連結(jié)對(duì)角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對(duì)邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

              證明:連結(jié)AC.

              ∴ (三角形中位線定理).

              同理,

              ∴GH EF

              ∴四邊形EFGH是平行四邊形.

              【小結(jié)】

              1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

              2.三角形中位線定理及證明思路.

              七、布置作業(yè)

              教材P188中1(2)、4、7

            八年級(jí)數(shù)學(xué)教案 篇3

              數(shù)據(jù)的波動(dòng)

              教學(xué)目標(biāo):

              1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

              2、了解刻畫數(shù)據(jù)離散程度的三個(gè)量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。

              教學(xué)重點(diǎn):會(huì)計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。

              教學(xué)難點(diǎn):理解數(shù)據(jù)離散程度與三個(gè)差之間的關(guān)系。

              教學(xué)準(zhǔn)備:計(jì)算器,投影片等

              教學(xué)過程:

              一、創(chuàng)設(shè)情境

              1、投影課本P138引例。

              (通過對(duì)問題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠抽取的20只雞腿的`平均質(zhì)量,同時(shí)讓學(xué)生初步體會(huì)平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個(gè)量度極差)

              2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。

              二、活動(dòng)與探究

              如果丙廠也參加了競(jìng)爭(zhēng),從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

              問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

              2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對(duì)應(yīng)平均數(shù)的差距。

              3、在甲、丙兩廠中,你認(rèn)為哪個(gè)廠雞腿質(zhì)量更符合要求?為什么?

              (在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個(gè)丙廠,其平均質(zhì)量和極差與甲廠相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識(shí)上的矛盾,為引出另兩個(gè)刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。

              三、講解概念:

              方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

              設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

              則s2= ,

              而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)

              從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

              四、做一做

              你能用計(jì)算器計(jì)算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個(gè)廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

              (通過對(duì)此問題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)

              五、鞏固練習(xí):課本第172頁隨堂練習(xí)

              六、課堂小結(jié):

              1、怎樣刻畫一組數(shù)據(jù)的離散程度?

              2、怎樣求方差和標(biāo)準(zhǔn)差?

              七、布置作業(yè):習(xí)題5.5第1、2題。

            八年級(jí)數(shù)學(xué)教案 篇4

              教學(xué)目標(biāo):

              情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。

              能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

              認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

              教學(xué)重點(diǎn)、難點(diǎn)

              重點(diǎn):等腰梯形性質(zhì)的`探索;

              難點(diǎn):梯形中輔助線的添加。

              教學(xué)課件:PowerPoint演示文稿

              教學(xué)方法:?jiǎn)l(fā)法、

              學(xué)習(xí)方法:討論法、合作法、練習(xí)法

              教學(xué)過程:

             。ㄒ唬⿲(dǎo)入

              1、出示圖片,說出每輛汽車車窗形狀(投影)

              2、板書課題:5梯形

              3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

              結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。

              5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)

              6、特殊梯形的分類:(投影)

              (二)等腰梯形性質(zhì)的探究

              【探究性質(zhì)一】

              思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

              猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

              如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

              想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

              等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。

              【操練】

             。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

              (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)

              【探究性質(zhì)二】

              如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

              如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

              等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。

              【探究性質(zhì)三】

              問題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)

              問題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)

              等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等

              (三)質(zhì)疑反思、小結(jié)

              讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

              學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

            八年級(jí)數(shù)學(xué)教案 篇5

              知識(shí)技能

              1.了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì)。

              2.探究線段垂直平分線的性質(zhì)。

              過程方法

              1.經(jīng)歷探索軸對(duì)稱圖形性質(zhì)的過程,進(jìn)一步體驗(yàn)軸對(duì)稱的特點(diǎn),發(fā)展空間觀察。

              2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。

              情感態(tài)度價(jià)值觀通過對(duì)軸對(duì)稱圖形性質(zhì)的探索,促使學(xué)生對(duì)軸對(duì)稱有了更進(jìn)一步的認(rèn)識(shí),活動(dòng)與探究的過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,并使學(xué)生具有一些初步研究問題的能力。

              教學(xué)重點(diǎn)

              1.軸對(duì)稱的性質(zhì)。

              2.線段垂直平分線的性質(zhì)。

              教學(xué)難點(diǎn)體驗(yàn)軸對(duì)稱的特征。

              教學(xué)方法和手段多媒體教學(xué)

              過程教學(xué)內(nèi)容

              引入中垂線概念

              引出圖形對(duì)稱的性質(zhì)第一張幻燈片

              上節(jié)課我們共同探討了軸對(duì)稱圖形,知道現(xiàn)實(shí)生活中由于有軸對(duì)稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對(duì)稱的性質(zhì)。

              幻燈片二

              1、圖中的'對(duì)稱點(diǎn)有哪些?

              2、點(diǎn)A和A的連線與直線MN有什么樣的關(guān)系?

              理由?:△ABC與△ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對(duì)折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點(diǎn)。

              我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

              定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

            八年級(jí)數(shù)學(xué)教案 篇6

              教學(xué)任務(wù)分析

              教學(xué)目標(biāo)

              知識(shí)技能

              一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運(yùn)算.

              二、類比異分母分?jǐn)?shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

              數(shù)學(xué)思考

              在分式的加減運(yùn)算中,體驗(yàn)知識(shí)的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問題能力.

              解決問題

              一、會(huì)進(jìn)行同分母和異分母分式的加減運(yùn)算.

              二、會(huì)解決與分式的加減有關(guān)的簡(jiǎn)單實(shí)際問題.

              三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運(yùn)算.

              情感態(tài)度

              通過師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對(duì)立統(tǒng)一的辯證觀點(diǎn).

              重點(diǎn)

              分式的加減法.

              難點(diǎn)

              異分母分式的加減法及簡(jiǎn)單的分式混合運(yùn)算.

              教學(xué)流程安排

              活動(dòng)流程圖

              活動(dòng)內(nèi)容和目的

              活動(dòng)1:?jiǎn)栴}引入

              活動(dòng)2:學(xué)習(xí)同分母分式的加減

              活動(dòng)3:探究異分母分式的加減

              活動(dòng)4:發(fā)現(xiàn)分式加減運(yùn)算法則

              活動(dòng)5:鞏固練習(xí)、總結(jié)、作業(yè)

              向?qū)W生提出兩個(gè)實(shí)際問題,使學(xué)生體會(huì)學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.

              類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡(jiǎn)單運(yùn)算.

              回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.

              通過以上探究過程,讓學(xué)生發(fā)現(xiàn)分式加減運(yùn)算的法則,通過分式在物理學(xué)的應(yīng)用及簡(jiǎn)單混合運(yùn)算,使學(xué)生深化對(duì)分式加減運(yùn)算法則的理解.

              通過練習(xí)、作業(yè)進(jìn)一步鞏固分式的運(yùn)算.

              課前準(zhǔn)備

              教具

              學(xué)具

              補(bǔ)充材料

              課件

              教學(xué)過程設(shè)計(jì)

              問題與情境

              師生行為

              設(shè)計(jì)意圖

             。刍顒(dòng)1]

              1.問題一:比較電腦與手抄的錄入時(shí)間.

              2.問題二;幫幫小明算算時(shí)間

              所需時(shí)間為,

              如何求出的值?

              3.這里用到了分式的加減,提出本節(jié)課的主題.

              教師通過課件展示問題.學(xué)生積極動(dòng)腦解決問題,提出困惑:

              分式如何進(jìn)行加減?

              通過實(shí)際問題中要用到分式的加減,從而提出問題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.

             。刍顒(dòng)2]

              1.提出小學(xué)數(shù)學(xué)中一道簡(jiǎn)單的分?jǐn)?shù)加法題目.

              2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.

              3.教師使用課件展示[例1]

              4.教師通過課件出兩個(gè)小練習(xí).

              教師提出問題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運(yùn)算法則.

              學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運(yùn)算方法.

              通過例題,讓學(xué)生和教師一起體會(huì)同分母分式加減運(yùn)算,同時(shí)教師指出運(yùn)算中的.注意事項(xiàng).

              由兩個(gè)學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).

              運(yùn)用類比的方法,從學(xué)生熟知的知識(shí)入手,有利于學(xué)生接受新知識(shí).

              師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過思考學(xué)會(huì)新知識(shí),提高自信心.

              讓學(xué)生進(jìn)一步體會(huì)同分母分式的加減運(yùn)算.

             。刍顒(dòng)3]

              1.教師以練習(xí)的形式通過“自我發(fā)展的平臺(tái)”,向?qū)W生展示這樣一道題.

              2.教師提出思考題:

              異分母的分式加減法要遵守什么法則呢?

              教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.

              教師通過課件引導(dǎo)學(xué)生思考,學(xué)生會(huì)想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運(yùn)算的方法思路.

              由學(xué)生主動(dòng)提出解決問題的方法,從而激發(fā)了學(xué)生探究問題的興趣.

              通過學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,體會(huì)學(xué)習(xí)的樂趣.

              [活動(dòng)4]

             。保谡Z言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.

              2.教師使用課件展示[例2]

              3.教師通過課件出4個(gè)小練習(xí).

              4.[例3]在圖的電路中,已測(cè)定CAD支路的電阻是R1歐姆,又知CBD支路的'電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;

              試用含有R1的式子表示總電阻R

              5.教師使用課件展示[例4]

              教師提出要求,由學(xué)生說出分式加減法則的字母表示形式.

              通過例題,讓學(xué)生和教師一起體會(huì)異分母分式加減運(yùn)算,同時(shí)教師重點(diǎn)演示通分的過程.

              教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡(jiǎn)公分母及時(shí)指出學(xué)生在通分中出現(xiàn)的問題,由學(xué)生自己完成.

              教師引導(dǎo)學(xué)生尋找解決問題的突破口,由師生共同完成,對(duì)比物理學(xué)中的計(jì)算,體會(huì)各學(xué)科知識(shí)之間的聯(lián)系.

              分式的混合運(yùn)算,師生共同完成,教師提醒學(xué)生注意運(yùn)算順序,通分要仔細(xì).

              由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會(huì)數(shù)學(xué)符號(hào)語言的精練.

              讓學(xué)生體會(huì)運(yùn)用的公式解決問題的過程.

              鍛煉學(xué)生運(yùn)用法則解決問題的能力,既準(zhǔn)確又有速度.

              提高學(xué)生的計(jì)算能力.

              通過分式在物理學(xué)中的應(yīng)用,加強(qiáng)了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會(huì)到學(xué)習(xí)數(shù)學(xué)的重要性,體會(huì)各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.

              提高學(xué)生綜合應(yīng)用知識(shí)的能力.

              [活動(dòng)5]

              1.教師通過課件出2個(gè)分式混合運(yùn)算的小練習(xí).

              2.總結(jié):

              a)這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你能說一說嗎?

              b)⑴方法思路;

              c)⑵計(jì)算中的主意事項(xiàng);

              d)⑶結(jié)果要化簡(jiǎn).

              3.作業(yè):

              a)教科書習(xí)題16.2第4、5、6題.

              學(xué)生練習(xí)、鞏固.

              教師巡視指導(dǎo).

              學(xué)生完成、交流.,師生評(píng)價(jià).

              教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補(bǔ)充完善.

              教師布置作業(yè).

              鍛煉學(xué)生運(yùn)用法則進(jìn)行運(yùn)算的能力,提高準(zhǔn)確性及速度.

              提高學(xué)生歸納總結(jié)的能力.

            八年級(jí)數(shù)學(xué)教案 篇7

              一、創(chuàng)設(shè)情境

              1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫出一次函數(shù)的圖象?

              (一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象).

              2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?

              (正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).

              3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

              4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

              二、探究歸納

              1.在畫函數(shù)的圖象時(shí),通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

              2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.

              分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

              解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

              過點(diǎn)(-1.5,0)和(0,-3)所作的'直線就是直線y=-2x-3.

              所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

              三、實(shí)踐應(yīng)用

              例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.

              分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

              解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

              例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

              分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

            八年級(jí)數(shù)學(xué)教案 篇8

              課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課

              【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

              【課前練習(xí)】

              1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

              2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。

              【典型例題】

              例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

              (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

              錯(cuò)答: B

              正解: C

              錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。

              例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

              (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

              錯(cuò)解 :B

              正解:D

              錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

              例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。

              錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

              錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。

              正解: -1≤k<2且k≠

              例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。

              錯(cuò)解:由根與系數(shù)的關(guān)系得

              x1+x2= -(2m+1), x1x2=m2+1,

              ∵x12+x22=(x1+x2)2-2 x1x2

             。絒-(2m+1)]2-2(m2+1)

             。2 m2+4 m-1

              又∵ x12+x22=15

              ∴ 2 m2+4 m-1=15

              ∴ m1 = -4 m2 = 2

              錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。

              正解:m = 2

              例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

              錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20

              ∵ △≥0

              ∴ 16 m+20≥0,

              ∴ m≥ -5/4

              又 ∵ m2-1≠0,

              ∴ m≠±1

              ∴ m的取值范圍是m≠±1且m≥ -

              錯(cuò)因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。

              正解:m的取值范圍是m≥-

              例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

              錯(cuò)解:∵方程有整數(shù)根,

              ∴△=9-4a>0,則a<2.25

              又∵a是非負(fù)數(shù),∴a=1或a=2

              令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

              ∴方程的整數(shù)根是x1= -1, x2= -2

              錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3

              正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

              【練習(xí)】

              練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。

             。1)求k的取值范圍;

             。2)是否存在實(shí)數(shù)k,使方程的.兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由。

              解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

              ∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

             。2)存在。

              如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。

              ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

              讀了上面的解題過程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確答案。

              解:上面解法錯(cuò)在如下兩個(gè)方面:

             。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

             。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

              練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

              解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=

             。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4

              ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。

              又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:

              x1+x2=- >0 ;

              x1. x2=- >0 解得 :a<0

              綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。

              【小結(jié)】

              以上數(shù)例,說明我們?cè)谇蠼庥嘘P(guān)二次方程的問題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

              1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。

              2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。

              3、條件多面時(shí)(如例5、例6)考慮要周全。

              【布置作業(yè)】

              1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?

              2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。

              求證:關(guān)于x的方程

              (m-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。

              考題匯編

              1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

              2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

             。1)若方程的一個(gè)根為1,求m的值。

              (2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請(qǐng)說明理由。

              3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

              4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。

            八年級(jí)數(shù)學(xué)教案 篇9

              教學(xué)建議

              1、平行線等分線段定理

              定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

              注意事項(xiàng):定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

              定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

              2、平行線等分線段定理的推論

              推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

              推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊。

              記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。

              推論的用途:(1)平分已知線段;(2)證明線段的倍分。

              重難點(diǎn)分析

              本節(jié)的重點(diǎn)是平行線等分線段定理。因?yàn)樗粌H是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

              本節(jié)的難點(diǎn)也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識(shí)和理解上有一定的難度,在加上平行線等分線段定理的兩個(gè)推論以及各種變式,學(xué)生難免會(huì)有應(yīng)接不暇的感覺,往往會(huì)有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

              教法建議

              平行線等分線段定理的引入

              生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個(gè)角度考慮:

              ①從生活實(shí)例引入,如刻度尺、作業(yè)本、柵欄、等等;

             、诳捎脝栴}式引入,開始時(shí)設(shè)計(jì)一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。

              教學(xué)設(shè)計(jì)示例

              一、教學(xué)目標(biāo)

              1、使學(xué)生掌握平行線等分線段定理及推論。

              2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。

              3、通過定理的變式圖形,進(jìn)一步提高學(xué)生分析問題和解決問題的能力。

              4、通過本節(jié)學(xué)習(xí),體會(huì)圖形語言和符號(hào)語言的和諧美

              二、教法設(shè)計(jì)

              學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

              三、重點(diǎn)、難點(diǎn)

              1、教學(xué)重點(diǎn):平行線等分線段定理

              2、教學(xué)難點(diǎn):平行線等分線段定理

              四、課時(shí)安排

              l課時(shí)

              五、教具學(xué)具

              計(jì)算機(jī)、投影儀、膠片、常用畫圖工具

              六、師生互動(dòng)活動(dòng)設(shè)計(jì)

              教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

              七、教學(xué)步驟

              【復(fù)習(xí)提問】

              1、什么叫平行線?平行線有什么性質(zhì)。

              2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

              【引入新課】

              由學(xué)生動(dòng)手做一實(shí)驗(yàn):每個(gè)同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫一條與橫線相交的直線 ,測(cè)量它被相鄰橫線截得的線段是否也相等?

             。ㄒ龑(dǎo)學(xué)生把做實(shí)驗(yàn)的條件和得到的結(jié)論寫成一個(gè)命題,教師總結(jié),由此得到平行線等分線段定理)

              平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

              注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確。

              下面我們以三條平行線為例來證明這個(gè)定理(由學(xué)生口述已知,求證)。

              已知:如圖,直線 , 。

              求證: 。

              分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。

              (引導(dǎo)學(xué)生找出另一種證法)

              分析2:要證的兩條線段分別是梯形的.腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識(shí)即可證得 。

              證明:過 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。

              ∴

              ∵ ,

              ∴

              又∵ , ,

              ∴

              ∴

              為使學(xué)生對(duì)定理加深理解和掌握,把知識(shí)學(xué)活,可讓學(xué)生認(rèn)識(shí)幾種定理的變式圖形,如圖(用計(jì)算機(jī)動(dòng)態(tài)演示)。

              引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

              推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

              再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

              推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。

              注意:推論1和推論2也都是很重要的定理,在今后的論證和計(jì)算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

              接下來講如何利用平行線等分線段定理來任意等分一條線段。

              例 已知:如圖,線段 。

              求作:線段 的五等分點(diǎn)。

              作法:①作射線 。

              ②在射線 上以任意長(zhǎng)順次截取 。

             、圻B結(jié) 。

              ④過點(diǎn) 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 。

              、 、 、 就是所求的五等分點(diǎn)。

              (說明略,由學(xué)生口述即可)

              【總結(jié)、擴(kuò)展】

              小結(jié):

             。╨)平行線等分線段定理及推論。

              (2)定理的證明只取三條平行線,是在較簡(jiǎn)單的情況下證明的,對(duì)于多于三條的平行線的情況,也可用同樣方法證明。

             。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

             。4)應(yīng)用定理任意等分一條線段。

              八、布置作業(yè)

              教材P188中A組2、9

              九、板書設(shè)計(jì)

              十、隨堂練習(xí)

              教材P182中1、2

            八年級(jí)數(shù)學(xué)教案 篇10

              教學(xué)目標(biāo):

              1、經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。

              2、能按要求把所給出的圖形補(bǔ)成以某直線為軸的軸對(duì)稱圖形,能依據(jù)圖形的軸對(duì)稱關(guān)系設(shè)計(jì)軸對(duì)稱圖形。

              教學(xué)重點(diǎn):本節(jié)課重點(diǎn)是掌握已知對(duì)稱軸L和一個(gè)點(diǎn),要畫出點(diǎn)A關(guān)于L的軸對(duì)稱點(diǎn)的畫法,在此基礎(chǔ)上掌握有關(guān)軸對(duì)稱圖形畫圖的操作技能,并能利用圖形之間的軸對(duì)稱關(guān)系來設(shè)計(jì)軸對(duì)稱圖形,掌握有關(guān)畫圖的技能及設(shè)計(jì)軸對(duì)稱圖形是本節(jié)課的難點(diǎn)。

              教學(xué)方法:動(dòng)手實(shí)踐、討論。

              教學(xué)工具:課件

              教學(xué)過程:

              一、 先復(fù)習(xí)軸對(duì)稱圖形的定義,以及軸對(duì)稱的相關(guān)的性質(zhì):

              1.如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個(gè)圖形叫做________________,這條直線叫做_____________

              2.軸對(duì)稱的三個(gè)重要性質(zhì)______________________________________________

              _____________________________________________________________________

              二、提出問題:

              二、探索練習(xí):

              1. 提出問題:

              如圖:給出了一個(gè)圖案的一半,其中的虛線是這個(gè)圖案的對(duì)稱軸。

              你能畫出這個(gè)圖案的另一半嗎?

              吸引學(xué)生讓學(xué)生有一種解決難點(diǎn)的想法。

              2.分析問題:

              分析圖案:這個(gè)圖案是由重要六個(gè)點(diǎn)構(gòu)成的,要將這個(gè)圖案的另一半畫出來,根據(jù)軸對(duì)稱的性質(zhì)只要畫出這個(gè)圖案中六個(gè)點(diǎn)的對(duì)應(yīng)點(diǎn)即可

              問題轉(zhuǎn)化成:已知對(duì)稱軸和一個(gè)點(diǎn)A,要畫出點(diǎn)A關(guān)于L的對(duì)應(yīng)點(diǎn) ,可采用如下方法:`

              在學(xué)生掌握已知一個(gè)點(diǎn)畫對(duì)應(yīng)點(diǎn)的基礎(chǔ)上,解決上述給出的.問題,使學(xué)生有一條較明確的思路。

              三、對(duì)所學(xué)內(nèi)容進(jìn)行鞏固練習(xí):

              1. 如圖,直線L是一個(gè)軸對(duì)稱圖形的對(duì)稱軸,畫出這個(gè)軸對(duì)稱圖形的另一半。

              2. 試畫出與線段AB關(guān)于直線L的線段

              3.如圖,已知 直線MN,畫出以MN為對(duì)稱軸 的軸對(duì)稱圖形

              小 結(jié): 本節(jié)課學(xué)習(xí)了已知對(duì)稱軸L和一個(gè)點(diǎn)如何畫出它的對(duì)應(yīng)點(diǎn),以及如何補(bǔ)全圖形,并利用軸對(duì)稱的性質(zhì)知道如何設(shè)計(jì)軸對(duì)稱圖形。

              教學(xué)后記:學(xué)生對(duì)這節(jié)課的內(nèi)容掌握比較好,但對(duì)于利用軸對(duì)稱的性質(zhì)來設(shè)計(jì)圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高

            【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

            八年級(jí)的數(shù)學(xué)教案12-14

            八年級(jí)數(shù)學(xué)教案06-18

            八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

            八年級(jí)數(shù)學(xué)教案人教版01-03

            人教版八年級(jí)數(shù)學(xué)教案11-04

            八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

            八年級(jí)數(shù)學(xué)教案【熱】11-29

            八年級(jí)數(shù)學(xué)教案【熱門】12-03

            【薦】八年級(jí)數(shù)學(xué)教案12-03

            【熱】八年級(jí)數(shù)學(xué)教案12-07