關(guān)于八年級(jí)數(shù)學(xué)教案模板匯總5篇
作為一名默默奉獻(xiàn)的教育工作者,通常需要準(zhǔn)備好一份教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么應(yīng)當(dāng)如何寫(xiě)教案呢?以下是小編為大家整理的八年級(jí)數(shù)學(xué)教案5篇,僅供參考,大家一起來(lái)看看吧。
八年級(jí)數(shù)學(xué)教案 篇1
復(fù)習(xí)第一步::
勾股定理的有關(guān)計(jì)算
例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個(gè)正方形,則此正方形的面積為.
析解:圖中陰影是一個(gè)正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長(zhǎng)平方為:172-152=64,故正方形面積為6
勾股定理解實(shí)際問(wèn)題
例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無(wú)風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.
析解:彩旗自然下垂的長(zhǎng)度就是矩形DCEF
的對(duì)角線DE的長(zhǎng)度,連接DE,在Rt△DEF中,根據(jù)勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂時(shí)的最低處離地面的最小高度h為70cm
與展開(kāi)圖有關(guān)的計(jì)算
例3、(20xx年青島市中考試題)如圖,在棱長(zhǎng)為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.
析解:正方體是由平面圖形折疊而成,反之,一個(gè)正方體也可以把它展開(kāi)成平面圖形,如圖是正方體展開(kāi)成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長(zhǎng)度沒(méi)有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的'長(zhǎng)度.
在矩形ACC’A’中,因?yàn)锳C=2,CC’=1
所以由勾股定理得AC’=.
∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為
復(fù)習(xí)第二步:
1.易錯(cuò)點(diǎn):本節(jié)同學(xué)們的易錯(cuò)點(diǎn)是:在用勾股定理求第三邊時(shí),分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯(cuò)誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時(shí)要弄清楚解題中的三角形是否為直角三角形.
例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長(zhǎng)c.
錯(cuò)解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒(méi)有分清直角三角形的斜邊和直角邊,錯(cuò)把c當(dāng)成了斜邊.
正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時(shí),一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2
例5:已知一個(gè)Rt△ABC的兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)的平方是
錯(cuò)解:因?yàn)镽t△ABC的兩邊長(zhǎng)分別為3和4,根據(jù)勾股定理得:第三邊長(zhǎng)的平方是32+42=25
剖析:此題并沒(méi)有告訴我們已知的邊長(zhǎng)4一定是直角邊,而4有可能是斜邊,因此要分類(lèi)討論.
正解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長(zhǎng)的平方是25;當(dāng)4為斜邊時(shí),第三邊長(zhǎng)的平方為:42-32=7,因此第三邊長(zhǎng)的平方為:25或7.
溫馨提示:在用勾股定理時(shí),當(dāng)斜邊沒(méi)有確定時(shí),應(yīng)進(jìn)行分類(lèi)討論.
例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.
錯(cuò)解:由勾股定理得c=剖析:此題并沒(méi)有告訴你⊿ABC為直角三角形
八年級(jí)數(shù)學(xué)教案 篇2
教學(xué)目標(biāo)
、俳(jīng)歷探索整式除法運(yùn)算法則的過(guò)程,會(huì)進(jìn)行簡(jiǎn)單的整式除法運(yùn)算(只要求單項(xiàng)式除以單項(xiàng)式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨(dú)立思考、集體協(xié)作的能力。
②理解整式除法的算理,發(fā)展有條理的思考及表達(dá)能力。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):整式除法的運(yùn)算法則及其運(yùn)用。
難點(diǎn):整式除法的運(yùn)算法則的推導(dǎo)和理解,尤其是單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。
教學(xué)準(zhǔn)備
卡片及多媒體課件。
教學(xué)設(shè)計(jì)
情境引入
教科書(shū)第161頁(yè)問(wèn)題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?
重點(diǎn)研究算式(1。90×1024)÷(5。98×1021)怎樣進(jìn)行計(jì)算,目的是給出下面兩個(gè)單項(xiàng)式相除的模型。
注:教科書(shū)從實(shí)際問(wèn)題引入單項(xiàng)式的除法運(yùn)算,學(xué)生在探索這個(gè)問(wèn)題的過(guò)程中,將自然地體會(huì)到學(xué)習(xí)單項(xiàng)式的除法運(yùn)算的必要性,了解數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,同時(shí)再次經(jīng)歷感受較大數(shù)據(jù)的過(guò)程。
探究新知
(1)計(jì)算(1。90×1024)÷(5。98×1021),說(shuō)說(shuō)你計(jì)算的根據(jù)是什么?
。2)你能利用(1)中的方法計(jì)算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
。3)你能根據(jù)(2)說(shuō)說(shuō)單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?
注:教師可以鼓勵(lì)學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的`底數(shù)和指數(shù)發(fā)生的變化,并運(yùn)用自己的語(yǔ)言進(jìn)行描述。
單項(xiàng)式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進(jìn)行。探究活動(dòng)的安排,是使學(xué)生通過(guò)對(duì)具體的特例的計(jì)算,歸納出單項(xiàng)式的除法運(yùn)算性質(zhì),并能運(yùn)用乘除互逆的關(guān)系加以說(shuō)明,也可類(lèi)比分?jǐn)?shù)的約分進(jìn)行。在這些活動(dòng)過(guò)程中,學(xué)生的化歸、符號(hào)演算等代數(shù)推理能力和有條理的表達(dá)能力得到進(jìn)一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強(qiáng)調(diào)的。
歸納法則
單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。
注:通過(guò)總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語(yǔ)言表達(dá)自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
應(yīng)用新知
例2計(jì)算:
。1)28x4y2÷7x3y;
。2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號(hào)。對(duì)本例可以采用學(xué)生口述,教師板書(shū)的形式完成。口述和板書(shū)都應(yīng)注意展示法則的應(yīng)用,計(jì)算過(guò)程要詳盡,使學(xué)生盡快熟悉法則。
注:?jiǎn)雾?xiàng)式除以單項(xiàng)式,既要對(duì)系數(shù)進(jìn)行運(yùn)算,又要對(duì)相同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對(duì)只在一個(gè)單項(xiàng)式里含有的冪要加以注意,這些對(duì)剛剛接觸整式除法的學(xué)生來(lái)講,難免會(huì)出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問(wèn)題。
鞏固新知教科書(shū)第162頁(yè)練習(xí)1及練習(xí)2。
學(xué)生自己嘗試完成計(jì)算題,同桌交流。
注:在獨(dú)立解題和同伴的相互交流過(guò)程中讓學(xué)生自己去體會(huì)法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動(dòng)參與學(xué)習(xí)的習(xí)慣。
作業(yè)
1。必做題:教科書(shū)第164頁(yè)習(xí)題15。3第1題;第2題。
2。選做題:教科書(shū)第164頁(yè)習(xí)題15。3第8題
八年級(jí)數(shù)學(xué)教案 篇3
教學(xué)目標(biāo):
1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).
2.掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).
3.會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).
教學(xué)重點(diǎn):
掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).
難點(diǎn):
會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).
情感態(tài)度與價(jià)值觀:
通過(guò)學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來(lái)源于實(shí)踐,服務(wù)于實(shí)踐.能利用事物之間的類(lèi)比性解決問(wèn)題.
教學(xué)過(guò)程:
一、課堂引入
1.回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的`乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));
2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來(lái)看這條性質(zhì)是否成立. 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.
三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來(lái)表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1.
八年級(jí)數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo)
。ㄒ唬⒅R(shí)與技能:
。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
。ǘ⑦^(guò)程與方法:
。1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類(lèi)比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類(lèi)比思想。
(2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
。3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
。ㄈ⑶楦袘B(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過(guò)程
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
。3)992–1= 。
設(shè)計(jì)意圖:
如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類(lèi)比很自然地過(guò)渡到正確理解因式分解的概念上,從而為因式分解的'掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題
P165的探究(略);
2. 看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類(lèi)比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
。1)3x(x-1)= ;
。2)(a+b+c)= ;
。3)(+4)(-4)= ;
。4)(-3)2= ;
。5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
。3)2-16= ;
。4)a3-a= ;
。5)2-6+9= 。
在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類(lèi)似的例子嗎?除此之外,你還能找到類(lèi)似的例子嗎?
八年級(jí)數(shù)學(xué)教案 篇5
一、 教學(xué)目標(biāo)
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件.
2.難點(diǎn):能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫(xiě)P127[思考],學(xué)生自己依次填出:,,,.
2.學(xué)生看問(wèn)題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的流速為多少?
請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v /h.
輪船順流航行90 所用的`時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.
3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍.
[補(bǔ)充提問(wèn)]如果題目為:當(dāng)字母為何值時(shí),分式無(wú)意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?
。1) (2) (3)
[分析] 分式的值為0時(shí),必須同時(shí)滿(mǎn)足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類(lèi)題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當(dāng)x取何值時(shí),下列分式有意義?
(1) (2) (3)
3. 當(dāng)x為何值時(shí),分式的值為0?
。1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
(1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).
。2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).
(3)x與的差于4的商是 .
2.當(dāng)x取何值時(shí),分式 無(wú)意義?
3. 當(dāng)x為何值時(shí),分式 的值為0?
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09