亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            八年級數(shù)學(xué)教案

            時間:2023-02-22 11:27:56 八年級數(shù)學(xué)教案 我要投稿

            八年級數(shù)學(xué)教案15篇

              作為一位杰出的教職工,時常需要編寫教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。來參考自己需要的教案吧!下面是小編收集整理的八年級數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

            八年級數(shù)學(xué)教案15篇

            八年級數(shù)學(xué)教案1

              一、內(nèi)容和內(nèi)容解析

              1.內(nèi)容

              二次根式的性質(zhì)。

              2.內(nèi)容解析

              本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

              對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點為:理解二次根式的性質(zhì).

              二、目標(biāo)和目標(biāo)解析

              1.教學(xué)目標(biāo)

             。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

             。2)會運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

             。3)了解代數(shù)式的概念.

              2.目標(biāo)解析

             。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

              (2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

              (3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

              三、教學(xué)問題診斷分析

              二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

              本節(jié)課的教學(xué)難點為:二次根式性質(zhì)的靈活運(yùn)用.

              四、教學(xué)過程設(shè)計

              1.探究性質(zhì)1

              問題1 你能解釋下列式子的含義嗎?

              師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

              【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負(fù)數(shù)的算術(shù)平方根的平方.

              問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

              師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

              【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

              問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

              師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

              【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

              例2 計算

             。1) ;(2) .

              師生活動:學(xué)生獨(dú)立完成,集體訂正.

              【設(shè)計意圖】鞏固二次根式的`性質(zhì)1,學(xué)會靈活運(yùn)用.

              2.探究性質(zhì)2

              問題4 你能解釋下列式子的含義嗎?

              師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

              【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

              問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

              師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

              【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

              問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

              師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

              【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

              例3 計算

             。1) ;(2) .

              師生活動:學(xué)生獨(dú)立完成,集體訂正.

              【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運(yùn)用.

              3.歸納代數(shù)式的概念

              問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

              師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

              【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

              4.綜合運(yùn)用

             。1)算一算:

              【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

             。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時, 等于多少?當(dāng) 時, 又等于多少?

              【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

             。3)談一談你對 與 的認(rèn)識.

              【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.

              5.總結(jié)反思

             。1)你知道了二次根式的哪些性質(zhì)?

             。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?

             。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

              (4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識.

              6.布置作業(yè):教科書習(xí)題16.1第2,4題.

              五、目標(biāo)檢測設(shè)計

              1. ; ; .

              【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

              2.下列運(yùn)算正確的是( )

              A. B. C. D.

              【設(shè)計意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡的能力.

              3.若 ,則 的取值范圍是 .

              【設(shè)計意圖】考查學(xué)生對一個數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

              4.計算: .

              【設(shè)計意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

            八年級數(shù)學(xué)教案2

              教學(xué)目標(biāo):

              【知識與技能】

              1、理解并掌握等腰三角形的性質(zhì)。

              2、會用符號語言表示等腰三角形的性質(zhì)。

              3、能運(yùn)用等腰三角形性質(zhì)進(jìn)行證明和計算。

              【過程與方法】

              1、通過觀察等腰三角形的對稱性,發(fā)展學(xué)生的形象思維。

              2、通過實踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學(xué)活動經(jīng)驗,感受數(shù)學(xué)思考過程的條理性,發(fā)展學(xué)生的合情推理能力。

              3、通過運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問題,提高學(xué)生運(yùn)用幾何語言表達(dá)問題的,運(yùn)用知識和技能解決問題的能力。

              【情感態(tài)度】

              引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識解答問題的活動中取得成功的體驗。

              【教學(xué)重點】

              等腰三角形的性質(zhì)及應(yīng)用。

              【教學(xué)難點】

              等腰三角形的證明。

              教學(xué)過程:

              一、情境導(dǎo)入,初步認(rèn)識

              問題1什么叫等腰三角形?它是一個軸對稱圖形嗎?請根據(jù)自己的理解,利用軸對稱的知識,自己做一個等腰三角形。要求學(xué)生獨(dú)立思考,動手作圖后再互相交流評價。

              可按下列方法做出:

              作一條直線l,在l上取點A,在l外取點B,作出點B關(guān)于直線l的對稱點C,連接AB,AC,CB,則可得到一個等腰三角形。

              問題2每位同學(xué)請拿出事先準(zhǔn)備好的長方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點?

              教師指導(dǎo):上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

              把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說說你的猜想。

              在一張白紙上任意畫一個等腰三角形,把它剪下來,請你試著折一折。你的猜想仍然成立嗎?

              教學(xué)說明:通過學(xué)生的動手操作與觀察發(fā)現(xiàn),加深學(xué)生對等腰三角形性質(zhì)的理解。

              二、思考探究,獲取新知

              教師依據(jù)學(xué)生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):

             、佟螧=∠C→兩個底角相等。

             、贐D=CD→AD為底邊BC上的.中線。

              ③∠BAD=∠CAD→AD為頂角∠BAC的平分線。

              ∠ADB=∠ADC=90°→AD為底邊BC上的高。

              指導(dǎo)學(xué)生用語言敘述上述性質(zhì)。

              性質(zhì)1等腰三角形的兩個底角相等(簡寫成:“等邊對等角”)。

              性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡記為:“三線合一”)。

              教師指導(dǎo)對等腰三角形性質(zhì)的證明。

              1、證明等腰三角形底角的性質(zhì)。

              教師要求學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導(dǎo)學(xué)生分析思路時強(qiáng)調(diào):

              (1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個三角形。

              (2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。

              2、證明等腰三角形“三線合一”的性質(zhì)。

              【教學(xué)說明】在證明中,設(shè)計輔助線是關(guān)鍵,引導(dǎo)學(xué)生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的,重視這一點,要求學(xué)生板書證明過程,以體會一題多解帶來的體驗。

              三、典例精析,掌握新知

              例如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

              解:∵AB=AC,BD=BC=AD,

              ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)。

              設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

              從而∠ABC=∠C=∠BDC=2x。

              于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

              解得x=36°

              于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

              【教學(xué)說明】等腰三角形“等邊對等角”及“三線合一”性質(zhì),可以實現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的度數(shù)。要在解題過程中,學(xué)會從復(fù)雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問題。

              四、運(yùn)用新知,深化理解

              第1組練習(xí):

              1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。

              如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。

              2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。

              第2組練習(xí):

              1、如果△ABC是軸對稱圖形,則它一定是( )

              A、等邊三角形

              B、直角三角形

              C、等腰三角形

              D、等腰直角三角形

              2、等腰三角形的一個外角是100°,它的頂角的度數(shù)是( )

              A、80° B、20°

              C、80°和20° D、80°或50°

              3、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm。求這個等腰三角形的邊長。

              4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。

              【教學(xué)說明】

              等腰三角形解邊方面的計算類型較多,引導(dǎo)學(xué)生見識不同類型,并適時概括歸納,幫學(xué)生形成解題能力,注意提醒學(xué)生分類討論思想的應(yīng)用。

              【答案】

              第1組練習(xí)答案:

              1、(1)72°;(2)30°

              2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

              3、∠B=77°,∠C=38、5°

              第2組練習(xí)答案:

              1、C

              2、C

              3、設(shè)三角形的底邊長為xcm,則其腰長為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三邊長為4cm,6cm和6cm。

              4、延長CD交AB的延長線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。

              四、師生互動,課堂小結(jié)

              這節(jié)課主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用。請學(xué)生表述性質(zhì),提醒每個學(xué)生要靈活應(yīng)用它們。

              學(xué)生間可交流體會與收獲。

            八年級數(shù)學(xué)教案3

              【教學(xué)目標(biāo)】

              1、了解三角形的中位線的概念

              2、了解三角形的中位線的性質(zhì)

              3、探索三角形的中位線的性質(zhì)的一些簡單的應(yīng)用

              【教學(xué)重點、難點】

              重點:三角形的中位線定理。

              難點:三角形的中位線定理的證明中添加輔助線的思想方法。

              【教學(xué)過程】

             。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

              1、如圖,為了測量一個池塘的寬BC,在池塘一側(cè)的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

              2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

             。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的`位置有什么要求?

             。2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

              3、引導(dǎo)學(xué)生概括出中位線的概念。

              問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?

              啟發(fā)學(xué)生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

              4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)

             。ǘ、師生互動,探究新知

              1、證明你的猜想

              引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。

             。ㄒ阎酣SABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

              啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)

              啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補(bǔ)短)

              學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強(qiáng)調(diào)有其他證法。

              證明:如圖,以點E為旋轉(zhuǎn)中心,把⊿ADE繞點E,按順時針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

              ∴∠ADE=∠F,AD=CF,

              ∴AB∥CF。

              又∵BD=AD=CF,

              ∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

              ∴DF∥BC(根據(jù)什么?),

              ∴DE 1/2BC

              2、啟發(fā)學(xué)生歸納定理,并用文字語言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。

             。ㄈ⿲W(xué)以致用、落實新知

              1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點所得的三角形周長是多少?

              2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

              3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點。

              求證:四邊形EFGH是平行四邊形。

              啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點,你會聯(lián)想到什么圖形?

              啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

              證明:如圖,連接AC。

              ∵EF是⊿ABC的中位線,

              ∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

              同理,HG 1/2AC。

              ∴EF HG。

              ∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

              挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

             。ㄋ模⿲W(xué)生練習(xí),鞏固新知

              1、請回答引例中的問題(1)

              2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點。求證:∠PNM=∠PMN

             。ㄎ澹┬〗Y(jié)回顧,反思提高

              今天你學(xué)到了什么?還有什么困惑?

            八年級數(shù)學(xué)教案4

              一、教學(xué)目標(biāo)

              1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

              2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

              3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

              二、重點、難點和難點的突破方法:

              1、重點:認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

              2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

              3、難點的突破方法:

              首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:

              中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

              教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

              在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。

              三、例習(xí)題的意圖分析

              1、教材P143的例4的意圖

              (1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。

              (2)、這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

              (3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。

              (4)、這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。

              2、教材P145例5的意圖

              (1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

              (2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

              (3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

              四、課堂引入

              嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。

              五、例習(xí)題的分析

              教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

              教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。

              六、隨堂練習(xí)

              1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

              1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

              求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

              假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的'銷售定額并說明理由。

              2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:

              1匹1.2匹1.5匹2匹

              3月12臺20臺8臺4臺

              4月16臺30臺14臺8臺

              根據(jù)表格回答問題:

              商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

              假如你是經(jīng)理,現(xiàn)要進(jìn)貨,6月份在有限的資金下進(jìn)貨單位將如何決定?

              答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達(dá)到的額定。

              2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進(jìn)1.2匹,由于資金有限就要少進(jìn)2匹空調(diào)。

              七、課后練習(xí)

              1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

              2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

              3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

              A.97、96 B.96、96.4 C.96、97 D.98、97

              4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

              A.24、25 B.23、24 C.25、25 D.23、25

              5.隨機(jī)抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

              溫度(℃) -8 -1 7 15 21 24 30

              天數(shù)3 5 5 7 6 2 2

              請你根據(jù)上述數(shù)據(jù)回答問題:

              (1).該組數(shù)據(jù)的中位數(shù)是什么?

              (2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達(dá)到市民“滿意溫度”的大約有多少天?

              答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

            八年級數(shù)學(xué)教案5

              【教學(xué)目標(biāo)】

              一、教學(xué)知識點

              1.命題的組成.

              2.命題真假的判斷。

              二、能力訓(xùn)練要求:

              1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

              2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法

              三、情感與價值觀要求:

              1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一

              2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

              3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值

              【教學(xué)重點】準(zhǔn)確的找出命題的條件和結(jié)論

              【教學(xué)難點】理解判斷一個真命題需要證明

              【教學(xué)方】探討、合作交流

              【教具準(zhǔn)備】投影片

              【教學(xué)過程】

              一、情景創(chuàng)設(shè)、引入新課

              師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?

              新課:

             。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

              1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。

              2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

              3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

              4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

              5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

              師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

              二、例題講解:

              例1:師:下列命題的條件是什么?結(jié)論是什么?

              1.如果兩個角相等,那么他們是對頂角;

              2.如果a>b,b>c,那么a=c;

              3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;

              4.菱形的四條邊都相等;

              5.全等三角形的面積相等。

              例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。

              2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴(kuò)展成這種形式,以分清條件和結(jié)論。

              例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

              師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通?梢耘e一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

              教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

              三、思維拓展:

              拓展1.師:如何證實一個命題是真命題呢?請同學(xué)們分小組交流一下。

              教學(xué)建議:不急于解決學(xué)生怎么證實真命題的問題,可按以下程序設(shè)計教學(xué)過程

             。1)首先給學(xué)生介紹歐幾里得的《原本》

             。2)引出概念:公理、定理,證明

             。3)啟發(fā)學(xué)生,現(xiàn)在如何證實一個命題的正確性

             。4)給出本套教材所選用如下6個命題作為公理

             。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

              拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

              建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

              練習(xí)書p197習(xí)題6.31

              四、問題式總結(jié)

              師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?

              建議:可對學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

              作業(yè):書p197習(xí)題6.32、3

              板書設(shè)計:

              定義與命題

              課時2

              條件

              1.命題的結(jié)構(gòu)特征

              結(jié)論

              1.假命題——可以舉反例

              2.命題真假的判別

              2.真命題——需要證明 學(xué)生活動一——

              探索命題的結(jié)構(gòu)特征

              學(xué)生觀察、分組討論,得出結(jié)論:

             。1)這五個命題都是用“如果……那么……”形式敘述的`

             。2)這五個命題都是由已知得到結(jié)論

              (3)這五個命題都有條件和結(jié)論

              學(xué)生活動二——

              探索命題的條件和結(jié)論

              生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

              學(xué)生活動三

              探索命題的真假——如何判斷假命題

              生:可以舉一個例子,說明命題1是不正確的,如圖:

              已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

              生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

              生:由此說明:命題1、2是不正確的

              生:命題3、4、5是正確的

              學(xué)生活動四

              探索命題的真假——如何證實一個命題是真命題

              學(xué)生交流:

              生:用我們以前學(xué)過的觀察、實驗、驗證特例等方法

              生:這些方法往往并不可靠

              生:能夠根據(jù)已知道的真命題證實呢?

              生:那已經(jīng)知道的真命題又是如何證實的?

              生:那可怎么辦呢?

              生:可通過證明的方法

              學(xué)生分小組討論得出結(jié)論

              生:命題的結(jié)構(gòu)特征:條件和結(jié)論

              生:命題有真假之分

              生:可以通過舉反例的方法判斷假命題

              生:可通過證明的方法證實真命題

            八年級數(shù)學(xué)教案6

              創(chuàng)設(shè)情境

              1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?

              2.將以上的性質(zhì)定理,分別用命題形式敘述出來。

              根據(jù)平行四邊形的定義,我們研究了平行四邊形的`其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?

              探究歸納

              平行四邊形的判定方法:

              證明:兩組對邊分別相等的四邊形是平行四邊形

              已知:

              求證:

              做一做:將四根細(xì)木條(其中兩條長相等,另外兩條長也相等)用小釘子釘在一起,做成一個四邊形,使等長的木條成為對邊。它是平行四邊形嗎?

              學(xué)生交流:把你做的四邊形和其他同學(xué)做的進(jìn)行比較,看看是否都是平行四邊形。

              觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形

              練習(xí):如圖,在ABCD中,E,F(xiàn),G和H分別是各邊中點.求證:四邊形EFGH為平行四邊形

            八年級數(shù)學(xué)教案7

              分式方程

              教學(xué)目標(biāo)

              1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

              2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。

              3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.

              教學(xué)重點:

              將實際問題中的等量 關(guān)系用分式方程表示

              教學(xué)難點:

              找實際問題中的等量關(guān)系

              教學(xué)過程:

              情境導(dǎo)入:

              有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

              如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

              根據(jù)題意,可得方程___________________

              二、講授新課

              從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的'時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

              這 一問題中有哪些等量關(guān)系?

              如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

              根據(jù)題意,可得方程_ _____________________。

              學(xué)生分組探討、交流,列出方程.

              三.做一做:

              為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

              四.議一議:

              上面所得到的方程有什么共同特點?

              分母中含有未知數(shù)的方程叫做分式方程

              分式方程與整式方程有什么區(qū)別?

              五、 隨堂練習(xí)

              (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

              (2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

              (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

              六、學(xué) 習(xí)小結(jié)

              本節(jié)課你學(xué)到了哪些知識?有什么感想?

              七.作業(yè)布置

            八年級數(shù)學(xué)教案8

              課題:一元二次方程實數(shù)根錯例剖析課

              【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

              【課前練習(xí)】

              1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。

              2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。

              【典型例題】

              例1 下列方程中兩實數(shù)根之和為2的方程是()

              (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

              錯答: B

              正解: C

              錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

              例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

              (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

              錯解 :B

              正解:D

              錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

              例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

              錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

              錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。

              正解: -1≤k<2且k≠

              例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。

              錯解:由根與系數(shù)的關(guān)系得

              x1+x2= -(2m+1), x1x2=m2+1,

              ∵x12+x22=(x1+x2)2-2 x1x2

              =[-(2m+1)]2-2(m2+1)

             。2 m2+4 m-1

              又∵ x12+x22=15

              ∴ 2 m2+4 m-1=15

              ∴ m1 = -4 m2 = 2

              錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

              正解:m = 2

              例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

              錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

              ∵ △≥0

              ∴ 16 m+20≥0,

              ∴ m≥ -5/4

              又 ∵ m2-1≠0,

              ∴ m≠±1

              ∴ m的取值范圍是m≠±1且m≥ -

              錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。

              正解:m的取值范圍是m≥-

              例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

              錯解:∵方程有整數(shù)根,

              ∴△=9-4a>0,則a<2.25

              又∵a是非負(fù)數(shù),∴a=1或a=2

              令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

              ∴方程的整數(shù)根是x1= -1, x2= -2

              錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

              正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

              【練習(xí)】

              練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

             。1)求k的取值范圍;

             。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

              解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

              ∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。

             。2)存在。

              如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

              ∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

              讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

              解:上面解法錯在如下兩個方面:

              (1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

             。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

              練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

              解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=

             。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4

              ∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。

              又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

              x1+x2=- >0 ;

              x1. x2=- >0 解得 :a<0

              綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。

              【小結(jié)】

              以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

              1、運(yùn)用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

              2、運(yùn)用根與系數(shù)關(guān)系時,△≥0是前提條件。

              3、條件多面時(如例5、例6)考慮要周全。

              【布置作業(yè)】

              1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

              2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

              求證:關(guān)于x的`方程

              (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

              考題匯編

              1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

              2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

             。1)若方程的一個根為1,求m的值。

             。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

              3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

              4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

            八年級數(shù)學(xué)教案9

              【教學(xué)目標(biāo)】

              1.了解分式概念.

              2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

              【教學(xué)重難點】

              重點:理解分式有意義的條件,分式的值為零的條件.

              難點:能熟練地求出分式有意義的條件,分式的值為零的條件.

              【教學(xué)過程】

              一、課堂導(dǎo)入

              1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.

              2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

              設(shè)江水的流速為x千米/時.

              輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.

              3.以上的式子,,,,有什么共同點?它們與分?jǐn)?shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

              [思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的`分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當(dāng)B≠0時,分式才有意義.

              二、例題講解

              例1:當(dāng)x為何值時,分式有意義.

              【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.

              (補(bǔ)充)例2:當(dāng)m為何值時,分式的值為0?

              (1);(2);(3).

              【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

              三、隨堂練習(xí)

              1.判斷下列各式哪些是整式,哪些是分式?

              9x+4,,,,,

              2.當(dāng)x取何值時,下列分式有意義?

              3.當(dāng)x為何值時,分式的值為0?

              四、小結(jié)

              談?wù)勀愕氖斋@.

              五、布置作業(yè)

              課本128~129頁練習(xí).

            八年級數(shù)學(xué)教案10

              教學(xué)目標(biāo):

              1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。

              2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

              3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

              重點與難點:

              重點:靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計。

              難點:分析典型圖案的設(shè)計意圖。

              疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖

              教具學(xué)具準(zhǔn)備:

              提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

              教學(xué)過程設(shè)計:

              1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)

              明確在欣賞了圖案后,簡單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的'位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

              2、課本

              1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

              評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。

              評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

              (二)課內(nèi)練習(xí)

              (1) 以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。

              (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。

              (三)議一議

              生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進(jìn)行交流。

              (四)課時小結(jié)

              本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運(yùn)用這些變換設(shè)計出一些簡單的圖案。

              通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)

              八年級數(shù)學(xué)上冊教案(五)延伸拓展

              進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。

            八年級數(shù)學(xué)教案11

              教學(xué)目標(biāo):

              (1)理解通分的意義,理解最簡公分母的意義;

              (2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。

              教學(xué)重點:分式通分的理解和掌握。

              教學(xué)難點:分式通分中最簡公分母的確定。

              教學(xué)工具:投影儀

              教學(xué)方法:啟發(fā)式、討論式

              教學(xué)過程:

              (一)引入

              (1)如何計算:

              由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。

              (2)如何計算:

              (3)何計算:

              引導(dǎo)學(xué)生思考,猜想如何求解?

              (二)新課

              1、類比分?jǐn)?shù)的通分得到分式的通分:

              把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

              注意:通分保證

              (1)各分式與原分式相等;

              (2)各分式分母相等。

              2.通分的依據(jù):分式的基本性質(zhì).

              3.通分的`關(guān)鍵:確定幾個分式的最簡公分母.

              通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

              根據(jù)分式通分和最簡公分母的定義,將分式通分:

              最簡公分母為:

              然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx

              通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。

              例1 通分:xxx

              分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

              解:∵ 最簡公分母是12xy2,

              小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).

              解:∵最簡公分母是10a2b2c2,

              由學(xué)生歸納最簡公分母的思路。

              分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。

            八年級數(shù)學(xué)教案12

              一、教學(xué)目標(biāo)

              1、使學(xué)生理解并掌握分式的概念,了解有理式的概念;

              2、使學(xué)生能夠求出分式有意義的條件;

              3、通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;

              4、通過類比方法的教學(xué),培養(yǎng)學(xué)生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認(rèn)識。

              二、重點、難點、疑點及解決辦法

              1、教學(xué)重點和難點明確分式的分母不為零。

              2、疑點及解決辦法通過類比分?jǐn)?shù)的`意義,加強(qiáng)對分式意義的理解。

              三、教學(xué)過程

              【新課引入】

              前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學(xué)分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗,可猜想到分式)

              【新課】

              1、分式的定義

              (1)由學(xué)生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

              用、表示兩個整式,就可以表示成的形式。如果中含有字母,式子就叫做分式。其中叫做分式的分子,叫做分式的分母。

             。2)由學(xué)生舉幾個分式的例子。

             。3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題。

             、俜帜钢泻凶帜。

              ②如同分?jǐn)?shù)一樣,分式的分母不能為零。

             。4)問:何時分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]

              2、有理式的分類

              請學(xué)生類比有理數(shù)的分類為有理式分類:

              例1當(dāng)取何值時,下列分式有意義?

             。1);

              解:由分母得。

              ∴當(dāng)時,原分式有意義。

              (2);

              解:由分母得。

              ∴當(dāng)時,原分式有意義。

             。3);

              解:∵恒成立,

              ∴取一切實數(shù)時,原分式都有意義。

             。4)。

              解:由分母得。

              ∴當(dāng)且時,原分式有意義。

              思考:若把題目要求改為:“當(dāng)取何值時下列分式無意義?”該怎樣做?

              例2當(dāng)取何值時,下列分式的值為零?

             。1);

              解:由分子得。

              而當(dāng)時,分母。

              ∴當(dāng)時,原分式值為零。

              小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零。

             。2);

              解:由分子得。

              而當(dāng)時,分母,分式無意義。

              當(dāng)時,分母。

              ∴當(dāng)時,原分式值為零。

             。3);

              解:由分子得。

              而當(dāng)時,分母。

              當(dāng)時,分母。

              ∴當(dāng)或時,原分式值都為零。

             。4)。

              解:由分子得。

              而當(dāng)時,,分式無意義。

              ∴沒有使原分式的值為零的的值,即原分式值不可能為零。

              (四)總結(jié)、擴(kuò)展

              1、分式與分?jǐn)?shù)的區(qū)別。

              2、分式何時有意義?

              3、分式何時值為零?

             。ㄎ澹╇S堂練習(xí)

              1、填空題:

             。1)當(dāng)時,分式的值為零

             。2)當(dāng)時,分式的值為零

              (3)當(dāng)時,分式的值為零

              2、教材P55中1、2、3.

              八、布置作業(yè)

              教材P56中A組3、4;B組(1)、(2)、(3)。

              九、板書設(shè)計

              課題例1

              1、定義例2

              2、有理式分類

            八年級數(shù)學(xué)教案13

              一、課堂導(dǎo)入

              回顧平行四邊的性質(zhì)定理及定義

              1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?

              2.將以上的性質(zhì)定理,分別用命題形式敘述出來。(如果……那么……)

              根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?

              二、新課講解

              平行四邊形的判定:

              (定義法):兩組對邊分別平行的四邊形的平邊形。

              幾何語言表達(dá)定義法:

              ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

              解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。

              活動:用做好的紙條拼成一個四邊形,其中強(qiáng)調(diào)兩組對邊分別相等。

              (平行四邊形判定定理):

              (一)兩組對邊分別相等的四邊形是平行四邊形。

              設(shè)問:這個命題的前提和結(jié)論是什么?

              已知:四邊形ABCD中,AB=CD,BC=DA。

              求證:四邊ABCD是平行四邊形。

              分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。

              板書證明過程。

              小結(jié):用幾何語言表達(dá)用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:

              平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

              (二)設(shè)問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?

              活動:課本探究內(nèi)容,并用事準(zhǔn)備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的'端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?

              設(shè)問:我們能否用推理的方法證明這個命題是正確的呢?(讓學(xué)生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過程。)

            八年級數(shù)學(xué)教案14

              一、學(xué)生起點分析

              學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?

              反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中

              可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時的引導(dǎo)。

              二、學(xué)習(xí)任務(wù)分析

              本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

              并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學(xué)目標(biāo):

              ● 知識與技能目標(biāo)

              1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

              2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

              ● 過程與方法目標(biāo)

              1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;

              2.經(jīng)歷從實驗到驗證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

              ● 情感與態(tài)度目標(biāo)

              1.體驗生活中的數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

              2.在探索過程中體驗成功的喜悅,樹立學(xué)習(xí)的自信心。

              教學(xué)重點

              理解勾股定理逆定理的具體內(nèi)容。

              三、教法學(xué)法

              1.教學(xué)方法:實驗猜想歸納論證

              本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強(qiáng),思維活躍,對通過實驗獲得數(shù)學(xué)結(jié)論已有一定的體驗

              但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個方面對學(xué)生進(jìn)行引導(dǎo):

              (1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;

              (2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;

              (3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

              2.課前準(zhǔn)備

              教具:教材、電腦、多媒體課件。

              學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

              四、教學(xué)過程設(shè)計

              本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

              登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

              第一環(huán)節(jié):情境引入

              內(nèi)容:

              情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?

              2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

              意圖:

              通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

              效果:

              從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

              第二環(huán)節(jié):合作探究

              內(nèi)容1:探究

              下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

              1.這三組數(shù)都滿足 嗎?

              2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

              意圖:

              通過學(xué)生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結(jié)論;在活動中體驗出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

              效果:

              經(jīng)過學(xué)生充分討論后,匯總各小組實驗結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

              從上面的分組實驗很容易得出如下結(jié)論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              內(nèi)容2:說理

              提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認(rèn)為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

              意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時明晰結(jié)論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              滿足 的三個正整數(shù),稱為勾股數(shù)。

              注意事項:為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個直觀的認(rèn)識。

              活動3:反思總結(jié)

              提問:

              1.同學(xué)們還能找出哪些勾股數(shù)呢?

              2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

              3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

              4.通過今天同學(xué)們合作探究,你能體驗出一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

              意圖:進(jìn)一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系

              第三環(huán)節(jié):小試牛刀

              內(nèi)容:

              1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

             、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

              解答:①②

              2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

              A 250 B 150 C 200 D 不能確定

              解答:B

              3.如圖1:在 中, 于 , ,則 是( )

              A 等腰三角形 B 銳角三角形

              C 直角三角形 D 鈍角三角形

              解答:C

              4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

              得到的三角形是( )

              A 直角三角形 B 銳角三角形

              C 鈍角三角形 D 不能確定

              解答:A

              意圖:

              通過練習(xí),加強(qiáng)對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用

              效果

              每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識。

              第四環(huán)節(jié):登高望遠(yuǎn)

              內(nèi)容:

              1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應(yīng)是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

              解答:符合要求 , 又 ,

              2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

              解答:由題意畫出相應(yīng)的圖形

              AB=240海里,BC=70海里,,AC=250海里;在△ABC中

              =(250+240)(250-240)

              =4900= = 即 △ABC是Rt△

              答:船轉(zhuǎn)彎后,是沿正西方向航行的。

              意圖:

              利用勾股定理逆定理解決實際問題,進(jìn)一步鞏固該定理。

              效果:

              學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形( ),以便于計算。

              第五環(huán)節(jié):鞏固提高

              內(nèi)容:

              1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

              解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

              2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

              圖4 圖5

              解答:④⑤是直角三角形,①②③⑥不是直角三角形

              意圖:

              第一題考查學(xué)生充分利用所學(xué)知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計算,從而解決問題。

              效果:

              學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

              第六環(huán)節(jié):交流小結(jié)

              內(nèi)容:

              師生相互交流總結(jié)出:

              1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

              2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形, 便于計算。

              意圖:

              鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的.困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗,進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。

              效果:

              學(xué)生暢所欲言自己的切身感受與實際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應(yīng)用。

              第七環(huán)節(jié):布置作業(yè)

              課本習(xí)題1.4第1,2,4題。

              五、教學(xué)反思:

              1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。

              2.注重引導(dǎo)學(xué)生積極參與實驗活動,從中體驗任何一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

              3.在利用今天所學(xué)知識解決實際問題時,引導(dǎo)學(xué)生善于對公式變形,便于簡便計算。

              4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

              5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實際情況做適當(dāng)調(diào)整,不做要求。

              由于本班學(xué)生整體水平較高,因而本設(shè)計教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

              附:板書設(shè)計

              能得到直角三角形嗎

              情景引入 小試牛刀: 登高望遠(yuǎn)

            八年級數(shù)學(xué)教案15

              第三十四學(xué)時:14.2.1平方差公式

              一、學(xué)習(xí)目標(biāo):

              1.經(jīng)歷探索平方差公式的過程。

              2.會推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡單的'運(yùn)算。

              二、重點難點

              重點:平方差公式的推導(dǎo)和應(yīng)用;

              難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

              三、合作學(xué)習(xí)

              你能用簡便方法計算下列各題嗎?

             。1)20xx×1999(2)998×1002

              導(dǎo)入新課:計算下列多項式的積.

              (1)(x+1)(x—1);

             。2)(m+2)(m—2)

             。3)(2x+1)(2x—1);

             。4)(x+5y)(x—5y)。

              結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

              即:(a+b)(a—b)=a2—b2

              四、精講精練

              例1:運(yùn)用平方差公式計算:

              (1)(3x+2)(3x—2);

             。2)(b+2a)(2a—b);

             。3)(—x+2y)(—x—2y)。

              例2:計算:

              (1)102×98;

              (2)(y+2)(y—2)—(y—1)(y+5)。

              隨堂練習(xí)

              計算:

             。1)(a+b)(—b+a);

             。2)(—a—b)(a—b);

              (3)(3a+2b)(3a—2b);

              (4)(a5—b2)(a5+b2);

             。5)(a+2b+2c)(a+2b—2c);

             。6)(a—b)(a+b)(a2+b2)。

              五、小結(jié)

             。╝+b)(a—b)=a2—b2

            【八年級數(shù)學(xué)教案】相關(guān)文章:

            八年級的數(shù)學(xué)教案12-14

            八年級《函數(shù)》數(shù)學(xué)教案08-17

            八年級數(shù)學(xué)教案12-09

            (經(jīng)典)八年級數(shù)學(xué)教案06-25

            八年級上冊人教版數(shù)學(xué)教案02-27

            【薦】八年級數(shù)學(xué)教案12-03

            八年級數(shù)學(xué)教案【熱門】12-03

            【熱】八年級數(shù)學(xué)教案12-07

            八年級數(shù)學(xué)教案【推薦】12-04

            【精】八年級數(shù)學(xué)教案12-04