亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

            八年級(jí)數(shù)學(xué)教案

            時(shí)間:2022-11-19 18:35:21 八年級(jí)數(shù)學(xué)教案 我要投稿

            八年級(jí)數(shù)學(xué)教案合集15篇

              作為一名人民教師,時(shí)常要開(kāi)展教案準(zhǔn)備工作,編寫(xiě)教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么應(yīng)當(dāng)如何寫(xiě)教案呢?以下是小編收集整理的八年級(jí)數(shù)學(xué)教案,歡迎大家分享。

            八年級(jí)數(shù)學(xué)教案合集15篇

            八年級(jí)數(shù)學(xué)教案1

              教學(xué)目標(biāo):

              1、知識(shí)目標(biāo):

              (1)掌握已知三邊畫(huà)三角形的方法;

              (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;

              (3)會(huì)添加較明顯的輔助線.

              2、能力目標(biāo):

              (1)通過(guò)尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

              (2)通過(guò)公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

              3、情感目標(biāo):

              (1)在公理的形成過(guò)程中滲透:實(shí)驗(yàn)、觀察、歸納;

              (2)通過(guò)變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.

              教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過(guò)的各種判定方法判定三角形全等。

              教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚(gè)三角形全等。

              教學(xué)用具:直尺,微機(jī)

              教學(xué)方法:自學(xué)輔導(dǎo)

              教學(xué)過(guò)程:

              1、新課引入

              投影顯示

              問(wèn)題:有一塊三角形玻璃窗戶(hù)破碎了,要去配一塊新的,你最少要對(duì)窗框測(cè)量哪幾個(gè)數(shù)據(jù)?如果你手頭沒(méi)有測(cè)量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

              這個(gè)問(wèn)題讓學(xué)生議論后回答,他們的答案或許只是一種感覺(jué)。于是教師要引導(dǎo)學(xué)生,抓住問(wèn)題的本質(zhì):三角形的三個(gè)元素――三條邊。

              2、公理的獲得

              問(wèn):通過(guò)上面問(wèn)題的分析,滿足什么條件的兩個(gè)三角形全等?

              讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫(huà)圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫(huà)圖法)

              公理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

              應(yīng)用格式: (略)

              強(qiáng)調(diào)說(shuō)明:

              (1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫(xiě)出結(jié)論。

              (2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)

              (3)、此公理與前面學(xué)過(guò)的公理區(qū)別與聯(lián)系

              (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。

              (5)說(shuō)明AAA與SSA不能判定三角形全等。

              3、公理的應(yīng)用

              (1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。

              例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架

              求證:AD⊥BC

              分析:(設(shè)問(wèn)程序)

              (1)要證AD⊥BC只要證什么?

              (2)要證∠1= 只要證什么?

              (3)要證∠1=∠2只要證什么?

              (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

              證明:(略)

              (2)講解例2(投影例2 )

              例2已知:如圖AB=DC,AD=BC

              求證:∠A=∠C

              (1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。

              (2)找學(xué)生代表口述證明思路。

              思路1:連接BD(如圖)

              證△ABD≌△CDB(SSS)先得∠A=∠C

              思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

              (3)教師共同討論后,說(shuō)明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫(xiě)出證明,一名學(xué)生板書(shū),教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的`輔助線寫(xiě)出,再證明。

              例3如圖,已知AB=AC,DB=DC

              (1)若E、F、G、H分別是各邊的中點(diǎn),求證:EH=FG

              (2)若AD、BC連接交于點(diǎn)P,問(wèn)AD、BC有何關(guān)系?證明你的結(jié)論。

              學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路

              讓學(xué)生在練習(xí)本上寫(xiě)出證明,然后選擇投影顯示。

              證明:(略)

              說(shuō)明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補(bǔ)角相等證兩直線的夾角等于 ,又是很重要的一種方法。

              例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

              求證:AC=2AE.

              證明:(略)

              學(xué)生口述證明思路,教師強(qiáng)調(diào)說(shuō)明:“中線”條件下的常規(guī)作輔助線法。

              5、課堂小結(jié):

              (1)判定三角形全等的方法:3個(gè)公理1個(gè)推論(SAS、ASA、AAS、SSS)

              在這些方法中,每一個(gè)都需要3個(gè)條件,3個(gè)條件中都至少包含條邊。

              (2)三種方法的綜合運(yùn)用

              讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。

              6、布置作業(yè):

              a、書(shū)面作業(yè)P70#11、12

              b、上交作業(yè)P70#14 P71B組3

            八年級(jí)數(shù)學(xué)教案2

              教學(xué)內(nèi)容

              本節(jié)課主要介紹全等三角形的概念和性質(zhì).

              教學(xué)目標(biāo)

              1.知識(shí)與技能

              領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念.

              2.過(guò)程與方法

              經(jīng)歷探索全等三角形性質(zhì)的過(guò)程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角.

              3.情感、態(tài)度與價(jià)值觀

              培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.

              重、難點(diǎn)與關(guān)鍵

              1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素.

              2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.

              3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.教具準(zhǔn)備

              四張大小一樣的紙片、直尺、剪刀.

              教學(xué)方法

              采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).教學(xué)過(guò)程

              一、動(dòng)手操作,導(dǎo)入課題

              1.先在其中一張紙上畫(huà)出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

              2.重新在一張紙板上畫(huà)出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

              【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.

              【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.

              學(xué)生在操作過(guò)程中,教師要讓學(xué)生事先在紙上畫(huà)出三角形,然后固定重疊的兩張紙,注意整個(gè)過(guò)程要細(xì)心.

              【互動(dòng)交流】剪出的'多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“≌”表示.

              概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.

              【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?

              【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.

              【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.

              【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?

              【交流討論】通過(guò)同桌交流,實(shí)驗(yàn)得出下面結(jié)論:

              1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.

              2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.

              3.完全重合說(shuō)明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.

            八年級(jí)數(shù)學(xué)教案3

              一、學(xué)習(xí)目標(biāo)

              1.使學(xué)生了解運(yùn)用公式法分解因式的意義;

              2.使學(xué)生掌握用平方差公式分解因式

              二、重點(diǎn)難點(diǎn)

              重點(diǎn):掌握運(yùn)用平方差公式分解因式。

              難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。

              學(xué)習(xí)方法:歸納、概括、總結(jié)。

              三、合作學(xué)習(xí)

              創(chuàng)設(shè)問(wèn)題情境,引入新課

              在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的`因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。

              如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法。

              1.請(qǐng)看乘法公式

              左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?

              利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。

              a2—b2=(a+b)(a—b)

              2.公式講解

              如x2—16

              =(x)2—42

              =(x+4)(x—4)。

              9m2—4n2

              =(3m)2—(2n)2

              =(3m+2n)(3m—2n)。

              四、精講精練

              例1、把下列各式分解因式:

              (1)25—16x2;(2)9a2—b2。

              例2、把下列各式分解因式:

             。1)9(m+n)2—(m—n)2;(2)2x3—8x。

              補(bǔ)充例題:判斷下列分解因式是否正確。

             。1)(a+b)2—c2=a2+2ab+b2—c2。

             。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

              五、課堂練習(xí)

              教科書(shū)練習(xí)。

              六、作業(yè)

              1、教科書(shū)習(xí)題。

              2、分解因式:x4—16x3—4x4x2—(y—z)2。

              3、若x2—y2=30,x—y=—5求x+y。

            八年級(jí)數(shù)學(xué)教案4

              【教學(xué)目標(biāo)】

              知識(shí)與技能

              能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

              過(guò)程與方法

              使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

              情感、態(tài)度與價(jià)值觀

              培養(yǎng)學(xué)生分析、類(lèi)比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

              【教學(xué)重難點(diǎn)】

              重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

              難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

              關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

              【教學(xué)過(guò)程】

              一、回顧交流,導(dǎo)入新知

              【復(fù)習(xí)交流】

              下列從左到右的變形是否是因式分解,為什么?

              (1)2x2+4=2(x2+2);

              (2)2t2-3t+1=(2t3-3t2+t);

              (3)x2+4xy-y2=x(x+4y)-y2;

              (4)m(x+y)=mx+my;

              (5)x2-2xy+y2=(x-y)2.

              問(wèn)題:

              1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

              2.多項(xiàng)式4x2-x和xy2-yz-y呢?

              請(qǐng)將上述多項(xiàng)式分別寫(xiě)成兩個(gè)因式的乘積的形式,并說(shuō)明理由.

              【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的.公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

              概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

              二、小組合作,探究方法

              教師提問(wèn):多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

              【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

              三、范例學(xué)習(xí),應(yīng)用所學(xué)

              例1:把-4x2yz-12xy2z+4xyz分解因式.

              解:-4x2yz-12xy2z+4xyz

              =-(4x2yz+12xy2z-4xyz)

              =-4xyz(x+3y-1)

              例2:分解因式:3a2(x-y)3-4b2(y-x)2

              【分析】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

              解法1:3a2(x-y)3-4b2(y-x)2

              =-3a2(y-x)3-4b2(y-x)2

              =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

              =-(y-x)2[3a2(y-x)+4b2]

              =-(y-x)2(3a2y-3a2x+4b2)

              解法2:3a2(x-y)3-4b2(y-x)2

              =(x-y)2·3a2(x-y)-4b2(x-y)2

              =(x-y)2[3a2(x-y)-4b2]

              =(x-y)2(3a2x-3a2y-4b2)

              例3:用簡(jiǎn)便的方法計(jì)算:

              0.84×12+12×0.6-0.44×12.

              【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

              解:0.84×12+12×0.6-0.44×12

              =12×(0.84+0.6-0.44)

              =12×1=12.

              【教師活動(dòng)】在學(xué)生完成例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

              四、隨堂練習(xí),鞏固深化

              課本115頁(yè)練習(xí)第1、2、3題.

              【探研時(shí)空】

              利用提公因式法計(jì)算:

              0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

              五、課堂總結(jié),發(fā)展?jié)撃?/p>

              1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

              2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.

              六、布置作業(yè),專(zhuān)題突破

              課本119頁(yè)習(xí)題14.3第1、4(1)、6題.

            八年級(jí)數(shù)學(xué)教案5

              ●教學(xué)目標(biāo)

              (一)教學(xué)知識(shí)點(diǎn)

              1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個(gè)三角形是否相似.

              2.能根據(jù)相似比進(jìn)行計(jì) 算.

              (二)能力訓(xùn)練要求

              1.能根據(jù)定義判斷兩個(gè)三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.

              2.能根據(jù)相似比求長(zhǎng)度和角度,培養(yǎng)學(xué)生的運(yùn)用能力.

              (三)情感與價(jià)值觀要求

              通過(guò)與相似多邊形有關(guān)概念的類(lèi)比,滲透類(lèi)比的教學(xué)思想,并領(lǐng)會(huì)特殊與一般的關(guān)系.

              ●教學(xué)重點(diǎn) 相似三角形的定義及運(yùn)用.

              ●教學(xué)難點(diǎn) 根據(jù)定義求線段長(zhǎng)或角的度數(shù).

              ●教學(xué)過(guò)程

             、.創(chuàng)設(shè)問(wèn)題情境,引入新課

              今天, 我們就來(lái)研究相似三角形.

             、.新課講解

              1.相似三角形的定義及記法

              三角對(duì)應(yīng)相等,三邊 對(duì)應(yīng)成比例的兩個(gè)三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

              其中對(duì)應(yīng)頂點(diǎn)要寫(xiě)在對(duì)應(yīng)位置,如A與D,B與E,C與F相對(duì)應(yīng).AB∶DE等于相似比.

              2.想一想

              如果△ABC∽△DEF,那么哪些角是對(duì)應(yīng)角?哪些邊是對(duì)應(yīng)邊?對(duì)應(yīng) 角 有什么關(guān)系?對(duì)應(yīng)邊呢?

              所以 D、E、F. .

              3.議一議,學(xué)生討論

              (1)兩個(gè)全等三角形一定相似嗎?為什么?

              (2)兩個(gè)直角三角 形一 定相似嗎?兩個(gè)等腰直角三角形呢?為 什么?

              (3)兩個(gè)等腰三角形一定相似嗎?兩個(gè)等邊三角形呢?為什么?

              結(jié)論:兩 個(gè)全等三角形一定相似.

              兩個(gè) 等腰直角三角形一定相似.兩個(gè)等邊三角形一定相似.兩個(gè)直角三角形和兩個(gè)等腰三角形不一定相似.

              4.例題

              例1、有一塊呈三角形形狀 的草坪,其中一邊的.長(zhǎng)是20 m,在這個(gè)草坪的圖紙上,這條邊長(zhǎng)5 cm,其他兩邊的 長(zhǎng)都是3.5 cm,求該草坪其他兩邊的實(shí)際長(zhǎng)度.

              例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

              ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長(zhǎng).

              5.想一想

              在例2的條件下,圖中有哪些線段成比例?

             、.課堂練習(xí) P129

             、.課時(shí)小結(jié)

              相似三角形的 判定方法定義法.

              Ⅴ.課后作業(yè)

            八年級(jí)數(shù)學(xué)教案6

              一、教學(xué)目標(biāo)

              1、認(rèn)識(shí)中位數(shù)和眾數(shù),并會(huì)求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

              2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們?cè)趯?shí)際問(wèn)題中分析并做出決策。

              3、會(huì)利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

              二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

              1、重點(diǎn):認(rèn)識(shí)中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

              2、難點(diǎn):利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

              3、難點(diǎn)的突破方法:

              首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:

              中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動(dòng)對(duì)中位數(shù)沒(méi)有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì)。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少不受極端值的影響。

              教學(xué)過(guò)程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個(gè)數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個(gè)數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個(gè)數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個(gè)數(shù)據(jù),若幾個(gè)數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個(gè)數(shù)據(jù)。

              在利用中位數(shù)、眾數(shù)分析實(shí)際問(wèn)題時(shí),應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實(shí)例,使同學(xué)在分析不同實(shí)例中有所體會(huì)。

              三、例習(xí)題的意圖分析

              1、教材P143的例4的意圖

              (1)、這個(gè)問(wèn)題的研究對(duì)象是一個(gè)樣本,主要是反映了統(tǒng)計(jì)學(xué)中常用到一種解決問(wèn)題的方法:對(duì)于數(shù)據(jù)較多的研究對(duì)象,我們可以考察總體中的一個(gè)樣本,然后由樣本的研究結(jié)論去估計(jì)總體的情況。

              (2)、這個(gè)例題另一個(gè)意圖是交待了當(dāng)數(shù)據(jù)個(gè)數(shù)為偶數(shù)時(shí),中位數(shù)的求法和解題步驟。(因?yàn)樵谇懊嬗薪榻B中位數(shù)求法,這里不再重述)

              (3)、問(wèn)題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計(jì)一個(gè)數(shù)據(jù)占總體的相對(duì)位置,說(shuō)明中位數(shù)是統(tǒng)計(jì)學(xué)中的一個(gè)重要的數(shù)據(jù)代表。

              (4)、這個(gè)例題再一次體現(xiàn)了統(tǒng)計(jì)學(xué)知識(shí)與實(shí)際生活是緊密聯(lián)系的,所以應(yīng)鼓勵(lì)學(xué)生學(xué)好這部分知識(shí)。

              2、教材P145例5的意圖

              (1)、通過(guò)例5應(yīng)使學(xué)生明白通常對(duì)待銷(xiāo)售問(wèn)題我們要研究的'是眾數(shù),它代表該型號(hào)的產(chǎn)品銷(xiāo)售,以便給商家合理的建議。

              (2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

              (3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

              四、課堂引入

              嚴(yán)格的講教材本節(jié)課沒(méi)有引入的問(wèn)題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過(guò)程中拉開(kāi)序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過(guò)了平均數(shù)的這個(gè)數(shù)據(jù)代表。它在分析數(shù)據(jù)過(guò)程中擔(dān)當(dāng)了重要的角色,今天我們來(lái)共同研究和認(rèn)識(shí)數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們?cè)诜治鰯?shù)據(jù)過(guò)程中又起到怎樣的作用。

              五、例習(xí)題的分析

              教材P144例4,從所給的數(shù)據(jù)可以看到并沒(méi)有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過(guò)觀察會(huì)發(fā)現(xiàn)共有12個(gè)數(shù)據(jù),偶數(shù)個(gè)可以取中間的兩個(gè)數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

              教材P145例5,由表中第二行可以查到23.5號(hào)鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤(rùn)提出。

              六、隨堂練習(xí)

              1某公司銷(xiāo)售部有營(yíng)銷(xiāo)人員15人,銷(xiāo)售部為了制定某種商品的銷(xiāo)售金額,統(tǒng)計(jì)了這15個(gè)人的銷(xiāo)售量如下(單位:件)

              1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

              求這15個(gè)銷(xiāo)售員該月銷(xiāo)量的中位數(shù)和眾數(shù)。

              假設(shè)銷(xiāo)售部負(fù)責(zé)人把每位營(yíng)銷(xiāo)員的月銷(xiāo)售定額定為320件,你認(rèn)為合理嗎?如果不合理,請(qǐng)你制定一個(gè)合理的銷(xiāo)售定額并說(shuō)明理由。

              2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷(xiāo)售臺(tái)數(shù)如表所示:

              1匹1.2匹1.5匹2匹

              3月12臺(tái)20臺(tái)8臺(tái)4臺(tái)

              4月16臺(tái)30臺(tái)14臺(tái)8臺(tái)

              根據(jù)表格回答問(wèn)題:

              商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

              假如你是經(jīng)理,現(xiàn)要進(jìn)貨,6月份在有限的資金下進(jìn)貨單位將如何決定?

              答案:1. (1)210件、210件(2)不合理。因?yàn)?5人中有13人的銷(xiāo)售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營(yíng)銷(xiāo)人員的一般水平),銷(xiāo)售額定為210件合適,因?yàn)樗仁侵形粩?shù)又是眾數(shù),是大部分人能達(dá)到的額定。

              2. (1)1.2匹(2)通過(guò)觀察可知1.2匹的銷(xiāo)售,所以要多進(jìn)1.2匹,由于資金有限就要少進(jìn)2匹空調(diào)。

              七、課后練習(xí)

              1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

              2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

              3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

              A.97、96 B.96、96.4 C.96、97 D.98、97

              4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒(méi)有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

              A.24、25 B.23、24 C.25、25 D.23、25

              5.隨機(jī)抽取我市一年(按365天計(jì))中的30天平均氣溫狀況如下表:

              溫度(℃) -8 -1 7 15 21 24 30

              天數(shù)3 5 5 7 6 2 2

              請(qǐng)你根據(jù)上述數(shù)據(jù)回答問(wèn)題:

              (1).該組數(shù)據(jù)的中位數(shù)是什么?

              (2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達(dá)到市民“滿意溫度”的大約有多少天?

              答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

            八年級(jí)數(shù)學(xué)教案7

              一、教學(xué)目標(biāo):

              1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

              2、能力目標(biāo):

             、,在實(shí)踐操作過(guò)程中,逐步探索圖形之間的平移關(guān)系;

              ②,對(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過(guò)對(duì)“基本圖案”的平移,復(fù)制所求的圖形;

              3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫(huà)圖等過(guò)程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。

              二、重點(diǎn)與難點(diǎn):

              重點(diǎn):圖形連續(xù)變化的`特點(diǎn);

              難點(diǎn):圖形的劃分。

              三、教學(xué)方法:

              講練結(jié)合。使用多媒體課件輔助教學(xué)。

              四、教具準(zhǔn)備:

              多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

              五、教學(xué)設(shè)計(jì):

              創(chuàng)設(shè)情景,探究新知:

              (演示課件):教材上小狗的圖案。提問(wèn):

              (1)這個(gè)圖案有什么特點(diǎn)?

              (2)它可以通過(guò)什么“基本圖案”,經(jīng)過(guò)怎樣的平移而形成?

              (3)在平移過(guò)程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

              小組討論,派代表回答。(答案可以多種)

              讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。

              看磁性黑板,展示教材64頁(yè)圖3-9,提問(wèn):左圖是一個(gè)正六邊形,它經(jīng)過(guò)怎樣的平移能得到右圖?誰(shuí)到黑板做做看?

              小組討論,派代表到臺(tái)上給大家講解。

              氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。

              暢所欲言,互相補(bǔ)充。

              課堂小結(jié):

              在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周?chē)鷮ふ移揭频睦印?/p>

              課堂練習(xí):

              小組討論。

              小組討論完成。

              例子一定要和大家接觸緊密、典型。

              答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。

              六、教學(xué)反思:

              本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過(guò)程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。

            八年級(jí)數(shù)學(xué)教案8

              分式方程

              教學(xué)目標(biāo)

              1.經(jīng)歷分式方程的概念,能將實(shí)際問(wèn)題中的等量關(guān)系用分式方程 表示,體會(huì)分式方程的模型作用.

              2.經(jīng)歷實(shí)際問(wèn)題-分式方程方程模型的過(guò)程,發(fā)展學(xué)生分析問(wèn)題、解決問(wèn)題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

              3.在活動(dòng)中培養(yǎng)學(xué)生樂(lè)于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問(wèn)題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

              教學(xué)重點(diǎn):

              將實(shí)際問(wèn)題中的等量 關(guān)系用分式方程表示

              教學(xué)難點(diǎn):

              找實(shí)際問(wèn)題中的等量關(guān)系

              教學(xué)過(guò)程:

              情境導(dǎo)入:

              有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問(wèn)題中的所有等量關(guān)系嗎?(分組交流)

              如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。

              根據(jù)題意,可得方程___________________

              二、講授新課

              從甲地到乙地有兩條公路:一條是全長(zhǎng)600 km的普通 公路,另一條是全長(zhǎng)480 km的高速公路。某客 車(chē)在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車(chē)由高速公路從 甲地到乙地所需的'時(shí)間。

              這 一問(wèn)題中有哪些等量關(guān)系?

              如果設(shè)客車(chē)由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的時(shí)間為_(kāi)________h。

              根據(jù)題意,可得方程_ _____________________。

              學(xué)生分組探討、交流,列出方程.

              三.做一做:

              為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號(hào)召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

              四.議一議:

              上面所得到的方程有什么共同特點(diǎn)?

              分母中含有未知數(shù)的方程叫做分式方程

              分式方程與整式方程有什么區(qū)別?

              五、 隨堂練習(xí)

              (1)據(jù)聯(lián)合國(guó)《20xx年全球投資 報(bào)告》指出,中國(guó)20xx年吸收外國(guó)投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國(guó)吸收外國(guó)投資額為 億美元,請(qǐng)你寫(xiě)出 滿足的方程。你能寫(xiě)出幾個(gè)方程?其中哪一個(gè)是分式方程?

              (2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時(shí)間相同,水流速度為2. 5千米/小時(shí),求輪船的靜水速度

              (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰(shuí)編得好

              六、學(xué) 習(xí)小結(jié)

              本節(jié)課你學(xué)到了哪些知識(shí)?有什么感想?

              七.作業(yè)布置

            八年級(jí)數(shù)學(xué)教案9

              一、學(xué)生起點(diǎn)分析

              學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?

              反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中

              可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。

              二、學(xué)習(xí)任務(wù)分析

              本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

              并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):

              ● 知識(shí)與技能目標(biāo)

              1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

              2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

              ● 過(guò)程與方法目標(biāo)

              1.經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;

              2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

              ● 情感與態(tài)度目標(biāo)

              1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

              2.在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心。

              教學(xué)重點(diǎn)

              理解勾股定理逆定理的具體內(nèi)容。

              三、教法學(xué)法

              1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證

              本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過(guò)實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)

              但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

              (1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;

              (2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程;

              (3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。

              2.課前準(zhǔn)備

              教具:教材、電腦、多媒體課件。

              學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

              四、教學(xué)過(guò)程設(shè)計(jì)

              本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

              登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

              第一環(huán)節(jié):情境引入

              內(nèi)容:

              情境:1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?

              2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?

              意圖:

              通過(guò)情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

              效果:

              從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

              第二環(huán)節(jié):合作探究

              內(nèi)容1:探究

              下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:

              1.這三組數(shù)都滿足 嗎?

              2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。

              意圖:

              通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

              效果:

              經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

              從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:

              如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

              內(nèi)容2:說(shuō)理

              提問(wèn):有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說(shuō)服力的.理由嗎?

              意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:

              如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

              滿足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。

              注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說(shuō)理,有條件的班級(jí),還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。

              活動(dòng)3:反思總結(jié)

              提問(wèn):

              1.同學(xué)們還能找出哪些勾股數(shù)呢?

              2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

              3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?

              4.通過(guò)今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過(guò)程呢?

              意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系

              第三環(huán)節(jié):小試牛刀

              內(nèi)容:

              1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說(shuō)明理由。

             、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

              解答:①②

              2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )

              A 250 B 150 C 200 D 不能確定

              解答:B

              3.如圖1:在 中, 于 , ,則 是( )

              A 等腰三角形 B 銳角三角形

              C 直角三角形 D 鈍角三角形

              解答:C

              4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

              得到的三角形是( )

              A 直角三角形 B 銳角三角形

              C 鈍角三角形 D 不能確定

              解答:A

              意圖:

              通過(guò)練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用

              效果

              每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。

              第四環(huán)節(jié):登高望遠(yuǎn)

              內(nèi)容:

              1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?

              解答:符合要求 , 又 ,

              2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

              解答:由題意畫(huà)出相應(yīng)的圖形

              AB=240海里,BC=70海里,,AC=250海里;在△ABC中

              =(250+240)(250-240)

              =4900= = 即 △ABC是Rt△

              答:船轉(zhuǎn)彎后,是沿正西方向航行的。

              意圖:

              利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。

              效果:

              學(xué)生能用自己的語(yǔ)言表達(dá)清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。

              第五環(huán)節(jié):鞏固提高

              內(nèi)容:

              1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。

              解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

              2.如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?

              圖4 圖5

              解答:④⑤是直角三角形,①②③⑥不是直角三角形

              意圖:

              第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問(wèn)題。

              效果:

              學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

              第六環(huán)節(jié):交流小結(jié)

              內(nèi)容:

              師生相互交流總結(jié)出:

              1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù);

              2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。

              意圖:

              鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。

              效果:

              學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。

              第七環(huán)節(jié):布置作業(yè)

              課本習(xí)題1.4第1,2,4題。

              五、教學(xué)反思:

              1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現(xiàn)的例題和練習(xí)。

              2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

              3.在利用今天所學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。

              4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

              5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。

              由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

              附:板書(shū)設(shè)計(jì)

              能得到直角三角形嗎

              情景引入 小試牛刀: 登高望遠(yuǎn)

            八年級(jí)數(shù)學(xué)教案10

              【教學(xué)目標(biāo)】

              一、教學(xué)知識(shí)點(diǎn)

              1.命題的組成.

              2.命題真假的判斷。

              二、能力訓(xùn)練要求:

              1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

              2.通過(guò)舉例判定一個(gè)命題是假命題,使學(xué)生學(xué)會(huì)反面思考問(wèn)題的方法

              三、情感與價(jià)值觀要求:

              1.通過(guò)反例說(shuō)明假命題,使學(xué)生認(rèn)識(shí)到任何事情都是正反兩方面對(duì)立統(tǒng)一

              2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

              3.通過(guò)對(duì)《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類(lèi)文明價(jià)值

              【教學(xué)重點(diǎn)】準(zhǔn)確的找出命題的條件和結(jié)論

              【教學(xué)難點(diǎn)】理解判斷一個(gè)真命題需要證明

              【教學(xué)方】探討、合作交流

              【教具準(zhǔn)備】投影片

              【教學(xué)過(guò)程】

              一、情景創(chuàng)設(shè)、引入新課

              師:如果這個(gè)星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個(gè)周日,我們郊游一定能成行嗎?為什么?

              新課:

             。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

              1.如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。

              2.如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形。

              3.如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等。

              4.如果一個(gè)四邊形的對(duì)角線相等,那么這個(gè)四邊形是矩形。

              5.如果一個(gè)四邊形的兩條對(duì)角線相互垂直,那么這個(gè)四邊形是菱形。

              師:由此可見(jiàn),每個(gè)命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。一般地,命題都可以寫(xiě)成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

              二、例題講解:

              例1:師:下列命題的條件是什么?結(jié)論是什么?

              1.如果兩個(gè)角相等,那么他們是對(duì)頂角;

              2.如果a>b,b>c,那么a=c;

              3.兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等;

              4.菱形的四條邊都相等;

              5.全等三角形的面積相等。

              例題教學(xué)建議:1:其中(1)、(2)請(qǐng)學(xué)生直接回答,(3)、(4)、(5)請(qǐng)學(xué)生分成小組交流然后回答。

              2:有的命題的描述沒(méi)有用“如果……那么……”的形式,在分析時(shí)可以擴(kuò)展成這種形式,以分清條件和結(jié)論。

              例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

              師:正確的命題叫真命題,不正確的命題叫假命題。要說(shuō)明一個(gè)命題是假命題,通?梢耘e一個(gè)例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

              教學(xué)建議:對(duì)于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說(shuō)明命題錯(cuò)誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

              三、思維拓展:

              拓展1.師:如何證實(shí)一個(gè)命題是真命題呢?請(qǐng)同學(xué)們分小組交流一下。

              教學(xué)建議:不急于解決學(xué)生怎么證實(shí)真命題的問(wèn)題,可按以下程序設(shè)計(jì)教學(xué)過(guò)程

             。1)首先給學(xué)生介紹歐幾里得的《原本》

              (2)引出概念:公理、定理,證明

             。3)啟發(fā)學(xué)生,現(xiàn)在如何證實(shí)一個(gè)命題的正確性

             。4)給出本套教材所選用如下6個(gè)命題作為公理

              (5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

              拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

              建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過(guò)長(zhǎng)期實(shí)踐驗(yàn)證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過(guò)推理論證的真命題。

              練習(xí)書(shū)p197習(xí)題6.31

              四、問(wèn)題式總結(jié)

              師:經(jīng)過(guò)本節(jié)課我們?cè)谝黄鸸餐接懡涣,你了解了有關(guān)命題的哪些知識(shí)?

              建議:可對(duì)學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點(diǎn)、命題是否都正確、如何判斷一個(gè)命題是假命題、如何證實(shí)一個(gè)命題是真命題。

              作業(yè):書(shū)p197習(xí)題6.32、3

              板書(shū)設(shè)計(jì):

              定義與命題

              課時(shí)2

              條件

              1.命題的結(jié)構(gòu)特征

              結(jié)論

              1.假命題——可以舉反例

              2.命題真假的判別

              2.真命題——需要證明 學(xué)生活動(dòng)一——

              探索命題的結(jié)構(gòu)特征

              學(xué)生觀察、分組討論,得出結(jié)論:

             。1)這五個(gè)命題都是用“如果……那么……”形式敘述的'

              (2)這五個(gè)命題都是由已知得到結(jié)論

             。3)這五個(gè)命題都有條件和結(jié)論

              學(xué)生活動(dòng)二——

              探索命題的條件和結(jié)論

              生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個(gè)三角形兩角和其中一角對(duì)邊對(duì)應(yīng)相等是條件,那么這兩個(gè)三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

              學(xué)生活動(dòng)三

              探索命題的真假——如何判斷假命題

              生:可以舉一個(gè)例子,說(shuō)明命題1是不正確的,如圖:

              已知:∠AOB,∠1=∠2,∠1,∠2不是對(duì)頂角

              生:命題2,若a=10,b=8,c=5,此時(shí)a>b,b>c,但a≠c

              生:由此說(shuō)明:命題1、2是不正確的

              生:命題3、4、5是正確的

              學(xué)生活動(dòng)四

              探索命題的真假——如何證實(shí)一個(gè)命題是真命題

              學(xué)生交流:

              生:用我們以前學(xué)過(guò)的觀察、實(shí)驗(yàn)、驗(yàn)證特例等方法

              生:這些方法往往并不可靠

              生:能夠根據(jù)已知道的真命題證實(shí)呢?

              生:那已經(jīng)知道的真命題又是如何證實(shí)的?

              生:那可怎么辦呢?

              生:可通過(guò)證明的方法

              學(xué)生分小組討論得出結(jié)論

              生:命題的結(jié)構(gòu)特征:條件和結(jié)論

              生:命題有真假之分

              生:可以通過(guò)舉反例的方法判斷假命題

              生:可通過(guò)證明的方法證實(shí)真命題

            八年級(jí)數(shù)學(xué)教案11

              課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課

              【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

              【課前練習(xí)】

              1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

              2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。

              【典型例題】

              例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

              (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

              錯(cuò)答: B

              正解: C

              錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。

              例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

              (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

              錯(cuò)解 :B

              正解:D

              錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

              例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。

              錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的'取值范圍是 -1≤k<2

              錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。

              正解: -1≤k<2且k≠

              例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。

              錯(cuò)解:由根與系數(shù)的關(guān)系得

              x1+x2= -(2m+1), x1x2=m2+1,

              ∵x12+x22=(x1+x2)2-2 x1x2

             。絒-(2m+1)]2-2(m2+1)

              =2 m2+4 m-1

              又∵ x12+x22=15

              ∴ 2 m2+4 m-1=15

              ∴ m1 = -4 m2 = 2

              錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無(wú)實(shí)數(shù)根,不符合題意。

              正解:m = 2

              例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

              錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20

              ∵ △≥0

              ∴ 16 m+20≥0,

              ∴ m≥ -5/4

              又 ∵ m2-1≠0,

              ∴ m≠±1

              ∴ m的取值范圍是m≠±1且m≥ -

              錯(cuò)因剖析:此題只說(shuō)(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠蹋杂袑?shí)數(shù)根。

              正解:m的取值范圍是m≥-

              例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

              錯(cuò)解:∵方程有整數(shù)根,

              ∴△=9-4a>0,則a<2.25

              又∵a是非負(fù)數(shù),∴a=1或a=2

              令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

              ∴方程的整數(shù)根是x1= -1, x2= -2

              錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3

              正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

              【練習(xí)】

              練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。

             。1)求k的取值范圍;

             。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由。

              解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

              ∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

             。2)存在。

              如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。

              ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

              讀了上面的解題過(guò)程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫(xiě)出正確答案。

              解:上面解法錯(cuò)在如下兩個(gè)方面:

             。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

              (2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

              練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

              解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=

             。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4

              ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。

              又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:

              x1+x2=- >0 ;

              x1. x2=- >0 解得 :a<0

              綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。

              【小結(jié)】

              以上數(shù)例,說(shuō)明我們?cè)谇蠼庥嘘P(guān)二次方程的問(wèn)題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

              1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。

              2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。

              3、條件多面時(shí)(如例5、例6)考慮要周全。

              【布置作業(yè)】

              1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?

              2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒(méi)有實(shí)數(shù)根。

              求證:關(guān)于x的方程

             。╩-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。

              考題匯編

              1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

              2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

             。1)若方程的一個(gè)根為1,求m的值。

             。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒(méi)有,請(qǐng)說(shuō)明理由。

              3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

              4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。

            八年級(jí)數(shù)學(xué)教案12

              教學(xué)目標(biāo):

              1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

              2.了解開(kāi)方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

              教學(xué)重點(diǎn):

              算術(shù)平方根的概念。

              教學(xué)難點(diǎn):

              根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

              教學(xué)過(guò)程

              一、情境導(dǎo)入

              請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問(wèn)題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫(huà)布,畫(huà)上自己的得意之作參加比賽,這塊正方形畫(huà)布的'邊長(zhǎng)應(yīng)取多少 ?如果這塊畫(huà)布的面積是 ?這個(gè)問(wèn)題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問(wèn)題?

              這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

              二、導(dǎo)入新課:

              1、提出問(wèn)題:(書(shū)P68頁(yè)的問(wèn)題)

              你是怎樣算出畫(huà)框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)

              這個(gè)問(wèn)題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.

              一般地,如果一個(gè)正數(shù)x的平方等于a,即 =a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號(hào)a,a叫做被開(kāi)方數(shù).規(guī)定:0的算術(shù)平方根是0.

              也就是,在等式 =a (x0)中,規(guī)定x = .

              2、 試一試:你能根據(jù)等式: =144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái).

              3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

              建議:求值時(shí),要按照算術(shù)平方根的意義,寫(xiě)出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫(xiě)出對(duì)應(yīng)的值.例如 表示25的算術(shù)平方根。

              4、例1 求下列各數(shù)的算術(shù)平方根:

              (1)100;(2)1;(3) ;(4)0.0001

              三、練習(xí)

              P69練習(xí) 1、2

              四、探究:(課本第69頁(yè))

              怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?

              方法1:課本中的方法,略;

              方法2:

              可還有其他方法,鼓勵(lì)學(xué)生探究。

              問(wèn)題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?

              大正方形的邊長(zhǎng)是 ,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?

              建議學(xué)生觀察圖形感受 的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.

              五、小結(jié):

              1、這節(jié)課學(xué)習(xí)了什么呢?

              2、算術(shù)平方根的具體意義是怎么樣的?

              3、怎樣求一個(gè)正數(shù)的算術(shù)平方根

              六、課外作業(yè):

              P75習(xí)題13.1活動(dòng)第1、2、3題

            八年級(jí)數(shù)學(xué)教案13

              教學(xué)目標(biāo):

              1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會(huì)求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

              2、在加權(quán)平均數(shù)中,知道權(quán)的差異對(duì)平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡(jiǎn)單的現(xiàn)象。

              3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會(huì)它們?cè)诓煌榫持械膽?yīng)用。

              4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

              教學(xué)重點(diǎn):

              體會(huì)平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

              教學(xué)難點(diǎn):

              對(duì)于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

              教學(xué)方法:

              歸納教學(xué)法。

              教學(xué)過(guò)程:

              一、知識(shí)回顧與思考

              1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

              一般地對(duì)于n個(gè)數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡(jiǎn)稱(chēng)平均數(shù)。

              如某公司要招工,測(cè)試內(nèi)容為數(shù)學(xué)、語(yǔ)文、外語(yǔ)三門(mén)文化課的綜合成績(jī),滿分都為100分,且這三門(mén)課分別按25%、25%、50%的比例計(jì)入總成績(jī),這樣計(jì)算出的成績(jī)?yōu)閿?shù)學(xué),語(yǔ)文、外語(yǔ)成績(jī)的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語(yǔ)文、外語(yǔ)三項(xiàng)測(cè)試成績(jī)的.權(quán)。

              中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

              眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)。

              如3,2,3,5,3,4中3是眾數(shù)。

              2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

              (1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

              (2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。

              (3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

              (4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡(jiǎn)便,當(dāng)一組數(shù)據(jù)中個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),適宜選擇眾數(shù)來(lái)表示這組數(shù)據(jù)的“集中趨勢(shì)”。

              3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

              算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。

              4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。

              利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。

              二、例題講解:

              某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績(jī)分別按40%、20%、40%的比例計(jì)入學(xué)期總評(píng)成績(jī),小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績(jī)依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評(píng)成績(jī)是多少?

              三、課堂練習(xí):

              復(fù)習(xí)題A組

              四、小結(jié):

              1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。

              2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

              五、作業(yè):

              復(fù)習(xí)題B組、C組(選做)

            八年級(jí)數(shù)學(xué)教案14

              一、內(nèi)容和內(nèi)容解析

              1.內(nèi)容

              三角形高線、中線及角平分線的概念、幾何語(yǔ)言表達(dá)及它們的畫(huà)法.

              2.內(nèi)容解析

              本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫(huà)法,培養(yǎng)學(xué)生動(dòng)手操作及解決問(wèn)題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛(ài)生活、勇于探索的思想感情。

              理解三角形高、角平分線及中線概念到用幾何語(yǔ)言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問(wèn)題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備.

              本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的畫(huà)法,難點(diǎn)是鈍角三角形的高的畫(huà)法及不同類(lèi)型的三角形高線的位置關(guān)系.

              二、目標(biāo)和目標(biāo)解析

              1.教學(xué)目標(biāo)

              (1)理解三角形的高、中線與角平分線等概念;

              (2)會(huì)用工具畫(huà)三角形的高、中線與角平分線;

              2.教學(xué)目標(biāo)解析

              (1)經(jīng)歷畫(huà)圖實(shí)踐過(guò)程,理解三角形的高、中線與角平分線等概念.

              (2)能夠熟練用幾何語(yǔ)言表達(dá)三角形的高、中線與角平分線的性質(zhì).

              (3)掌握三角形的高、中線與角平分線的.畫(huà)法.

              (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn).

              三、教學(xué)問(wèn)題診斷分析

              三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對(duì)邊或?qū)吽诘闹本上.

              三角形的中線的理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn).

              三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上.而角的平分線是一條射線,即就是說(shuō)三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.

            八年級(jí)數(shù)學(xué)教案15

              菱形

              學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

              1.經(jīng)歷探索菱形的識(shí)別方法的過(guò)程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;

              2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.

              補(bǔ)充例題:

              例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說(shuō)明你的理由.

              例2.如圖,平行四邊形ABCD的對(duì) 角線AC的垂直平分線與邊AD、BC分別交于E、F.

              四邊形AFCE是菱形嗎?說(shuō)明理由.

              例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)

              (1)試說(shuō)明四邊形AECG是平行四邊形;

              (2)若AB=4cm,BC=3cm,求線段EF的長(zhǎng);

              (3)當(dāng)矩形兩邊AB、BC具備怎樣的`關(guān)系時(shí),四邊形AECG是菱形.

              課后續(xù)助:

              一、填空題

              1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

              2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),

              且DE∥BA,DF∥ CA

              (1)要使四邊形AFDE是菱形,則要增加條件______________________

              (2)要使四邊形AFDE是矩形,則要增加條件______________________

              二、解答題

              1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說(shuō)明理由。

              2.如圖 ,平行四邊形A BCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.

              (1) AC,BD互相垂直嗎?為什么?

              (2) 四邊形ABCD是菱形 嗎?

              3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問(wèn): 四 邊形ABFE是菱形嗎?請(qǐng)說(shuō)明理由。

              4.如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.

             、徘笞C:ABF≌

             、迫魧⒄郫B的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說(shuō)明理由.