亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            初二數(shù)學教案

            時間:2022-12-01 18:36:25 八年級數(shù)學教案 我要投稿

            初二數(shù)學教案集錦15篇

              作為一名無私奉獻的老師,可能需要進行教案編寫工作,借助教案可以恰當?shù)剡x擇和運用教學方法,調動學生學習的積極性。那要怎么寫好教案呢?下面是小編幫大家整理的初二數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

            初二數(shù)學教案集錦15篇

            初二數(shù)學教案1

              初二上冊數(shù)學知識點總結:等腰三角形

              一、等腰三角形的性質:

              1、等腰三角形兩腰相等.

              2、等腰三角形兩底角相等(等邊對等角)。

              3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

              4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

              5、等邊三角形的性質:

              ①等邊三角形三邊都相等.

             、诘冗吶切稳齻內角都相等,都等于60°

              ③等邊三角形每條邊上都存在三線合一.

             、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).

              6.基本判定:

             、诺妊切蔚呐卸ǎ

              ①有兩條邊相等的`三角形是等腰三角形.

             、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).

             、频冗吶切蔚呐卸ǎ

             、偃龡l邊都相等的三角形是等邊三角形.

             、谌齻角都相等的三角形是等邊三角形.

             、塾幸粋角是60°的等腰三角形是等邊三角形.

            初二數(shù)學教案2

              一、班級情況分析:

              本學期一(1)班有學生40人,新轉學來一名女生。上學期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學生成績在年級排名第一,能過鎮(zhèn)中線,但是學生未能發(fā)揮出真實水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。

              一(7)班有學生38人,上學期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學生不多不夠拔尖,成績中層的學生占據(jù)大部分。學生好動,對數(shù)學學習的積極性普遍不夠高,學生好動,課堂氣氛較活躍。學生數(shù)學基礎不扎實。提升空間較大。

              兩班的整體成績均不夠理想。

              二、教材分析:

              本套教材切合《標準》的課程目標,有以下特點:

              1.為學生的數(shù)學學習構筑起點,提供大量數(shù)學活動的線索,成為供所有學生從事數(shù)學學習的出發(fā)點。

              2.向學生提供現(xiàn)實、有趣、富有挑戰(zhàn)性的學習素材。所有數(shù)學知識的學習,都力求從學生實際出發(fā),以他們熟悉或感興趣的問題情境引入學習主題,并展開數(shù)學探究。

              3.為學生提供探索、交流的時間和空間。設立了“做一做”、“想一想”、“議一議”等欄目,以使學生通過自主探索與合作交流,形成新的知識。

              4.展現(xiàn)數(shù)學知識的形成與應用過程,讓學生經(jīng)歷真正的“做數(shù)學”、“用數(shù)學”的過程。

              5.滿足不同學生發(fā)展的需求。

              三、教學目標及要求:

              第一章:

              1.經(jīng)歷用字母表示數(shù)量關系的過程,在現(xiàn)實情境中進一步理解字母表示數(shù)的意義,發(fā)展符號感。

              2.經(jīng)歷探索整式運算法則的過程,理解整式運算的算理,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達能力。

              3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運算性質,會進行簡單的整式加、減、乘、除運算。

              4.會推導乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

              第二章:

              1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進一步發(fā)展空間觀念、推理能力和有條理表達的能力。

              2.在具體情境中了解補角、余角、對頂角,知道等角的余角相等、等角的補角相等、對頂角相等。會用三角尺過已知直線外一點畫這條直線的平行線;會用尺規(guī)作一條線段等于已知線段、作一個角等于已知角。

              3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的特征。

              4.進一步激發(fā)學生對數(shù)學方面的興趣,體驗從數(shù)學的角度認識現(xiàn)實。

              第三章:

              1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學記數(shù)法表示它們,進一步發(fā)展數(shù)感;能借助計算器進行有關科學記數(shù)法的計算。

              2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會近似數(shù)的意義及在生活中的作用。

              3.通過實例,體驗收集、整理、描述和分析數(shù)據(jù)的過程。

              4.能讀懂統(tǒng)計圖并從中獲取信息,能形象、有效地運用統(tǒng)計圖描述數(shù)據(jù)。

              第四章:

              1.經(jīng)歷從實際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。

              2.體會等可能性與游戲規(guī)則的公平性,抽象出概率模型,計算概率,解決實際、作出合理決策的過程,體會概率是描述不確定現(xiàn)象的數(shù)學模型。

              3.能設計符合要求的簡單概率模型。

              第五章:

              1.通過觀察、操作、想象、推理、交流等活動,發(fā)展空間觀念,積累數(shù)學活動經(jīng)驗。

              2.在探索圖形性質的'過程中,發(fā)展推理能力和有條理的表達能力。

              3.進一步認識三角形的有關概念,了解三邊之間的關系以及三角形的內角和,了解三角形的穩(wěn)定性。

              4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個三角形全等的條件,能應用三角形的全等解決一些實際問題。

              5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。

              第六章:

              1.經(jīng)歷探索具體情境中兩個變量之間的關系的過程,進一步發(fā)展符號感和抽象思維。

              2.能發(fā)現(xiàn)實際情境中的變量及其相互關系,并確定其中的自變量或因變量。

              3.能從表格、圖象中分析出某些變量之間的關系,并能用自己的語言進行表達,發(fā)展有條理地進行思考和表達的能力。

              4.能根據(jù)具體問題,選取用表格或關系式來表示某些變量之間的關系,并結合對變量之間關系的分析,嘗試對變化趨勢進行初步的預測。

              第七章:

              1.在豐富的現(xiàn)實情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設計等數(shù)學活動過程,進一步發(fā)展空間觀念。

              2.通過豐富的生活實例認識軸對稱,探索它的基本性質,理解對應點所連的線段被對稱軸垂直平分的性質。

              3.探索并了解基本圖形的軸對稱性及其相關性質。

              4.能夠按要求作出簡單平面圖形經(jīng)過軸對稱后的圖形,探索簡單圖形之間的軸對稱關系,并能指出對稱軸。

              5.欣賞現(xiàn)實生活中的軸對稱圖形,能利用軸對稱進行一些圖案設計,體驗軸對稱在現(xiàn)實生活中的廣泛應用和豐富的文化價值。

              四、教學改革的設想(教學具體措施)

              充分體現(xiàn)培優(yōu)扶困的實施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實做到:

              1、根據(jù)學生的個別差異。因材施教,熱情關懷,循循善誘,加強個別輔導。幫助他們增強學習的信心,逐步達到教學的基本要求,盡量做好培優(yōu)輔差工作。

              2、精心設計練習,講究練習方式提高練習效率,對作業(yè)嚴格要求,及時檢查,認真批改,對作業(yè)中的錯誤及時找出原因,要求學生認真改正,培養(yǎng)學生獨立完成作業(yè)的良好習慣。

              3、認真?zhèn)湔n,深入鉆研教材,堅持自主學習,充分發(fā)揮學生的主動學習有積極性,了解學生裝學習數(shù)學的特點,研究教學規(guī)律,不斷改進教學方法。

              4、堅持學習,多聽課,多模仿,虛心向有經(jīng)驗的老師請教教育教學方法。努力提升自身的教學技能。

              5、在教學中,加強學生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學活動課,擴大學生的視野,拓寬知識面,培養(yǎng)學習數(shù)學的興趣,發(fā)展數(shù)學才能,發(fā)揮學生的主動性,獨立性和創(chuàng)造性。

              6、開展“一幫一”活動,實行以優(yōu)帶差點的幫助方法,多利用課余時間加強輔導,從基礎知識補起,力求使學生一課一得,力求提高優(yōu)秀率和及格率。

              7.課前充分備好課,在課堂教學中特別要體現(xiàn)出培扶,分層次教育。

              8.重視學生學習興趣的培養(yǎng),激發(fā)學生學習數(shù)學的內驅力。

              9.大膽地深度嘗試新的教學方法,要因地制宜,因材施教。

              10.重視基礎知識過關和單元測試過關工作,及時進行單元總結,做好平時的查漏補缺工作,不遺漏知識盲點。

              11.注重對作業(yè)、練習紙、練習冊、測驗卷的及時批改,并盡量做到全批全改,及時反饋信息。

              12.多用多媒體教學,使數(shù)學生動化。

              13.多用實物教學,使數(shù)學形象化。

              14.實行課課清,日日清,周周清。

              15.加強課堂管理,嚴把課堂質量關,提高課堂效率。

              16.抓好學生的作業(yè)上交完成情況。

              17.加強與學生的交流,做好學生的思想教育與培優(yōu)輔差工作。

              五、擬定本學期教學目標

              六、擬定本學期培優(yōu)扶養(yǎng)計劃。

              培扶措施

              對臨界優(yōu)秀生

              在理解題、思維訓練題給予方法指導,并要加強書面的表達能力。做到思路清晰,格式標準;A訓練題的過關檢測,對每次測試的成績給予個別指導,多用激勵教育。

              對臨界及格生:

              首先加強基礎知識的培訓,尤其要在選擇題、填空題多下功夫。在課堂上、課后對他們多加注意,及時糾正錯誤。抓好每次單元過關測試工作,抓好時機,多表揚,樹立信心。

              七、教學內容及課時安排(略)

              八、作業(yè)格式及批改要求:

              作業(yè)格式:

              1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。

              2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。

              3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。

              批改要求:

              1.每題作業(yè)都要有批改的痕跡,錯的打“×”,對的打“√”,書寫要清晰,明確看出錯對。

              2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分數(shù)+等級(等級分A、B、C三等,代表學生的書寫成績。)

              3、每次的作業(yè)要及時更正,更正時統(tǒng)一在每次的作業(yè)后面用紅筆更正。

            初二數(shù)學教案3

              教學目標

              1.知道梯形、等腰梯形、直角梯形的有關概念;能說出并證明等腰梯形的兩個性質;等腰梯形同一底上的兩個角相等;兩條對角線相等。

              2.會運用梯形的有關概念和性質進行有關問題的論證和計算。

              3.通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想。

              教學模式問題解決教學

              教學過程

              想一想:

              什么樣的四邊形是平行四邊形?平行四邊形有哪些性質?學生回答后,教師板書以下關系圖中的有關部分:

              畫一畫:

              畫一個梯形,并指出梯形的上、下底,畫出梯形的高。

              問題教學

              問題1:根據(jù)剛才的畫圖,請給梯形下一個定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學生自己給梯形下定義,有助于訓練學生觀察、概括和語言表述的能力。如果學生定義時,遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學生討論以下問題:一組對邊平行且這組對邊不相等的四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關系圖,并結合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的'公垂線段,在計算面積時高即為上下兩底(平行線)間的距離,也就是夾在兩底間的公垂線段的長度。畫高時可以從上底任一點向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構造直角三角形,便于計算。)

              問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會有困難;教師應進一步引導學生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當CD⊥BC時,另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)

              練一練:課本例1后練習第l、2題。

              問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質。并能證明你的猜想嗎?

              說明與建議:(l)教師要用微笑、點頭、贊嘆、激勵的表情和話語來鼓勵學生大膽猜想。(2)學生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導學生關注等腰梯形特有的性質---等腰梯形的底角相等。(3)如何證明這個猜想,可讓學生自己思考、探索、交流,教師給以引導,鼓勵證明多樣化,如課本第174頁的證法。教師可提醒學生證明過程中用到了"夾在平行線間的平行線段相等"這一性質。并指出:這種證法的實質是把一腰平移,從而構造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構造出兩個全等的直三角形等。

              問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學生用折紙的方法,確認等腰梯形是軸對稱圖形;教學中,還可引導學生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點的直線。)

              例題解析(課本例1)說明:本例的結論,為學生在討論"問題3"時已提及,則可由學生自已完成證明,并概括成為一個文字命題。如學生討論問題3時未提及,則可由教師引導學生猜想,然后再完成證明。

              課堂練習1.課本例1后練習第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)

            初二數(shù)學教案4

              一、教學目標

              1. 掌握等腰梯形的判定方法.

              2. 能夠運用等腰梯形的性質和判定進行有關問題的論證和計算,進一步培養(yǎng)學生的分析能力和計算能力.

              3. 通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想

              二、教法設計

              小組討論,引導發(fā)現(xiàn)、練習鞏固

              三、重點、難點

              1.教學重點:等腰梯形判定.

              2.教學難點:解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線).

              四、課時安排

              1課時

              五、教具學具準備

              多媒體,小黑板,常用畫圖工具

              六、師生互動活動設計

              教師復習引入,學生閱讀課本;學生在教師引導下探索等腰梯形的判定,歸納小結梯形轉化的常見的.輔助線

              七、教學步驟

              【復習提問】

              1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

              2.等腰梯形有哪些性質?它的性質定理是怎樣證明的?

              3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?

              我們已經(jīng)掌握了等腰梯形的性質,那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.

              【引人新課】

              等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.

              前面我們用等腰三角形的定理證明了等腰梯形的性質定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

              例1已知:如圖,在梯形 中, , ,求證: .

              分析:我們學過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉化為等腰三角形的兩個底角,定理就容易證明了.

              (引導學生口述證明方法,然后利用投影儀出示三種證明方法)

              (1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .

              又由 得 ,因此可得 .

              (2)作高 、 ,通過證 推出 .

              (3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .

              (證明過程略).

              例3 求證:對角線相等的梯形是等腰梯形.

              已知:如圖,在梯形 中, , .

              求證: .

              分析:證明本題的關鍵是如何利用對角線相等的條件來構造等腰三角形.

              在 和 中,已有兩邊對應相等,別人要能證 ,就可通過證 得到 .

              (引導學生說出證明思路,教師板書證明過程)

              證明:過點 作 ,交 延長線于 ,得 ,

              ∴ .

              ∵ , ∴

              ∴

              ∵ , ∴

              又∵ 、 ,∴

              ∴ .

              說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結論雖不能直接引用,但可以為以后解題提供思路.

              例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.

              分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

              畫法:①畫 ,使 .

              .

             、谘娱L 到 使 .

             、鄯謩e過 、 作 , , 、 交于點 .

              四邊形 就是所求的等腰梯形.

              解:梯形 周長 .

              答:梯形周長為26cm,面積為 .

              【總結、擴展】

              小結:(由學生總結)

              (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.

              (2)梯形的畫圖:一般先畫出有關的三角形,在此基礎上再畫出有關的平行四邊形,最后得到所求圖形.(三角形奠基法)

              八、布置作業(yè)

              l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.

              九、板書設計

              十、隨堂練習

              教材P177中l(wèi);P179中B組2

            初二數(shù)學教案5

            重難點分析

              本節(jié)的重點是矩形的性質和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。矩形的這些性質和判定定理即是平行四邊形性質與判定的延續(xù),又是以后要學習的正方形的基礎。

              本節(jié)的難點是矩形性質的靈活應用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是矩形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。

              教法建議

              根據(jù)本節(jié)內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:

              1.矩形的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

              2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.

              3. 如果條件允許,教師在講授這節(jié)內容前,可指導學生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

              4. 在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.

              5. 由于矩形的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

              6.在矩形性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。

              矩形教學設計

              教學目標

              1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質;能推出直角三角形斜邊上的中線等于斜邊的一半的性質。

              2.能運用以上性質進行簡單的證明和計算。

              此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關系,滲透集合的思想,培養(yǎng)學生辨證唯物主義觀點。

              引導性材料

              想一想:一般四邊形與平行四邊形之間的相互關系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質;具有一些特殊的性質。

              小學里已學過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學里已學過)等特殊性質,那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應畫在哪里?

              (讓學生初步感知矩形與平行四邊形的從屬關系。)

              演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當平行四邊形的一個內角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。

              問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

              說明與建議:教師的演示應充分展現(xiàn)變化過程,從而讓學生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學生能正確地給出矩形的定義。

              問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質呢?

              說明與建議:讓學生分組探索,有必要時,教師可引導學生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學生,這種探索的基礎是矩形有一個角是直角矩形的四個角都相等(矩形性質定理1),要學生給以證明(即課本例1后練習第1題)。

              學生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質上是一致的,所以不必另列為一個性質。

              學生探索矩形的四條對角線的大小關系時,如有困難,可引導學生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質定理2。

              問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質?

              說明與建議:(1)讓學生先觀察圖4.5-3,并議論猜想,如學生有困難,教師可引導學生觀察圖中的一個直角三角形(如Rt△ABC),讓學生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關系,然后讓學生自己給出如下證明:

              證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。

              ,AO=CO

              在Rt△ABC中,BO是斜邊AC上的中線,且 。

              直角三角形斜邊上的中線等于斜邊的一半。

              例題解析

              例1:(即課本例1)

              說明:本題難度不大,又有助于學生加深對性質定理的.理解,教學中應引導學生探索解法:

              如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件AOD=120出發(fā),應用矩形的性質可知,ADB=30,另外,還可以引導學生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:

              ∵四邊形ABCD是矩形,

              AC=BD(矩形的對角線相等)。

              又 。

              OA=BO,△AOB是等腰三角形,

              ∵AOD=120,AOB=180- 120= 60

              AOB是等邊三角形。

              BO=AB=4cm,

              BD=2BO=244cm=8cm。

              例2:(補充例題)

              已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。

              (l)猜想:EF與BD具有怎樣的關系?

              (2)試證明你的猜想。

              解:(l)EF垂直平分BD。

              (2)證明:∵ABC=90,點E是AC的中點。

              (直角三角形的斜邊上的中線等于斜邊的一半)。

              同理: 。

              BE=DE。

              又∵EF平分BED。

              EFBD,BF=DF。

              說明:本例是一道不給出結論,需要學生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學生的推理(包括合情推理和邏輯推理)能力。如果學生不適應,或有困難,教師可根據(jù)實際情況加以引導,這種訓練,重要的不是猜對了沒有?證明了沒有?而是讓學生經(jīng)歷這樣一種自己研究圖形性質的過程,順便指出:求解本題的重要基礎是識圖技能----能從復雜圖形中分解出如圖4.5-6所示的三個基本圖形。

              課堂練習

              1.課本例1后練習題第2題。

              2.課本例1后練習題第4題。

              小結

              1.矩形的定義:

              2.歸納總結矩形的性質:

              對邊平行且相等

              四個角都是直角

              對角線平行且相等

              3.直角三角形斜邊上的中線等于斜邊的一半。

              4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。

              作業(yè)

              l.課本習題4.3A組第2題。

              2.課本復習題四A組第6、7題。

            初二數(shù)學教案6

              課型:

              復習課

              學習目標(學習重點):

              1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;

              2. 一次函數(shù)應用的復習.

              補充例題:

              例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系

              (1)B出發(fā)時與A相距 千米;

              (2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;

              (3)B出發(fā)后 小時與A相遇;

              (4)求出A行走的路程S與時間t的函數(shù)關系式;

              (5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.

              例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的.周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.

              (1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;

              (2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.

              例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.

              (1)求s與t之間的函數(shù)關系式.

              (2)與圖③相對應的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;

              (3)寫出當38時,y與s之間的函數(shù)關系式,并在圖③中補全函數(shù)圖象.

              課后續(xù)助:

              1.某市自來水公司為限制單位用水,每月只給某單位計劃內用水3000噸,計劃內用水每噸收費0.5元,超計劃部分每噸按0.8元收費.

              (1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關系式

              ①用水量小于等于3000噸 ;②用水量大于3000噸 .

              (2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.

              (3)若某月該單位繳納水費1540元,則該單位用水多少噸?

              2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.

              (1)有月租費的收費方式是 (填①或②),月租費是 元;

              (2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關系式;

              (3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.

              3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結束全過程, 開始時風暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風速變?yōu)槠骄啃r增加4千米/時,一段時間,風暴保持不變,當沙塵暴遇到綠色植被區(qū)時,其風速平均每小時減小1千米/時,最終停止。 結合風速與時間的圖像,回答下列問題:

              (1)在y軸( )內填入相應的數(shù)值;

              (2)沙塵暴從發(fā)生到結束,共經(jīng)過多少小時?

              (3)求出當x25時,風速y(千米/時)與時間x(小時)之間的函數(shù)關系式.

              (4)若風速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?

            初二數(shù)學教案7

              教學目標

              知識與技能目標

              1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

              2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

              3.逐步掌握說理的基本方法。

              過程與方法目標

              1.在探索平行四邊形的判別條件的過程中,發(fā)展學生的合情推理意識,主動探索的習慣。

              2.鼓勵學生用多種方法進行說理。

              情感與態(tài)度目標

              1.培養(yǎng)學生探索創(chuàng)新的能力,開拓學生思路,發(fā)展學生的思維能力。

              2.培養(yǎng)學生合作學習,增強學生的自我評價意識。

              教材分析

              教材通過創(chuàng)設“釘制平行四邊形框架”這一情境,便于學生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學生自己準備,由學生自我操作。也可由教師演示。

              教學重點:平行四邊形的`判別方法。

              教學難點:利用平行四邊形的判別方法進行正確的說理。

              學情分析

              初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內容的學習,要引導學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質定理。

              教學流程

              一、創(chuàng)設情境,引入新課

              師:請同學們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

              學生活動:學生按小組進行探索。

            初二數(shù)學教案8

              1、教材分析

             。1)知識結構:

             。2)重點和難點分析:

              重點:四邊形的有關概念及內角和定理。因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。

              難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內這個條件,這幾個字的意思學生不好理解,所以是難點。

              2、教法建議

             。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。

              (2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

             。3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決。結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

              (4)本節(jié)用到的數(shù)學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。

              一、素質教育目標

             。ㄒ唬┲R教學點

              1、使學生掌握四邊形的有關概念及四邊形的內角和外角和定理。

              2、了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用。

             。ǘ┠芰τ柧汓c

              1、通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力。

              2、通過推導四邊形內角和定理,對學生滲透化歸思想。

              3、會根據(jù)比較簡單的條件畫出指定的四邊形。

              4、講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關概念對學生滲透類比思想。

              (三)德育滲透點

              使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣。

             。ㄋ模┟烙凉B透點

              通過四邊形內角和定理數(shù)學,滲透統(tǒng)一美,應用美。

              二、學法引導

              類比、觀察、引導、講解

              三、重點難點疑點及解決辦法

              1、教學重點:四邊形及其有關概念;熟練推導四邊形外角和這一結論,并用此結論解決與四邊形內外角有關計算問題。

              2、教學難點:理解四邊形的有關概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用。

              3、疑點及解決辦法:四邊形的定義中為什么要有在平面內,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關鍵是要分析好作圖的順序,一般先作一個角。

              四、課時安排

              2課時

              五、教具學具準備

              投影儀、膠片、四邊形模型、常用畫圖工具

              六、師生互動活動設計

              教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關概念;師生共同推導四邊形內角和的定理,學生鞏固內角和定理和應用;共同分析探索外角和定理,學生閱讀相關材料。

              第一課時

              七、教學步驟

              【復習引入】

              在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關知識有所了解,但還很膚淺,這一

              章我們將比較系統(tǒng)地學習各種四邊形的性質和判定分析它們之間的關系,并運用有關四邊形的知識解決一些新問題。

              【引入新課】

              用投影儀打出課前畫好的教材中P119的圖。

              師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形)。

              【講解新課】

              1、四邊形的有關概念

              結合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的'對角線(同時學生在書上畫出上述概念),講解這些概念時:

              (1)要結合圖形。

             。2)要與三角形類比。

             。3)講清定義中的關鍵詞語。如四邊形定義中要說明為什么加上同一平面內而三角形的定義中為什么不加同一平面內(三角形的三個頂點一定在同一平面內,而四個點有可能不在同一平面內,如圖42中的點。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內的限制)。

             。4)強調四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關系。

             。5)強調四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。

              (6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結論如圖4—4,圖4—5。

              2、四邊形內角和定理

              教師問:

             。1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?

             。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?

             。3)若在四邊形ABCD如圖4—7內任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。

              我們知道,三角形內角和等于180,那么四邊形的內角和就等于:

             、2180=360如圖4

              ②4180—360=360如圖4—7。

              例1已知:如圖48,直線于B、于C。

              求證:(1)(2)。

              本例題是四邊形內角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出。

              【總結、擴展】

              1、四邊形的有關概念。

              2、四邊形對角線的作用。

              3、四邊形內角和定理。

              八、布置作業(yè)

              教材P128中1(1)、2、 3。

              九、板書設計

            初二數(shù)學教案9

             一、利用勾股定理進行計算

              1.求面積

              例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。

              析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質,可聯(lián)想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。

              2.求邊長

              例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

              析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

              點評:這兩道題有一個共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當?shù)妮o助線,巧妙構造直角三角形,借助勾股定理來解決問題的,這種解決問題的.方法里蘊含著數(shù)學中很重要的轉化思想,請同學們要留心。

              二、利用勾股定理的逆定理判斷直角三角形

              例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

              析解:由于所給條件是關于a,b,c的一個等式,要判斷△ABC的形狀,設法求出式中的a,b,c的值或找出它們之間的關系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

              點評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結合思想"的重要體現(xiàn)。

              三、利用勾股定理說明線段平方和、差之間的關系

              例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。

              析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

              點評:若所給題目的已知或結論中含有線段的平方和或平方差關系時,則可考慮構造直角三角形,利用勾股定理來解決問題。

            初二數(shù)學教案10

              教學目的

              通過分析儲蓄中的數(shù)量關系、商品利潤等有關知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型。

              重點、難點

              1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

              2.難點:找出能表示整個題意的`等量關系。

              教學過程

              一、復習

              1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數(shù)

              本利和=本金×利息×年數(shù)+本金

              2.商品利潤等有關知識。

              利潤=售價—成本; =商品利潤率

              二、新授

              問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

              利息—利息稅=48。6

              可設小明爸爸前年存了x元,那么二年后共得利息為

              2.43%×X×2,利息稅為2.43%X×2×20%

              根據(jù)等量關系,得2.43%x·2—2.43%x×2×20%=48.6

              問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

              2.43%x·2.80%=48.6

              解方程,得x=1250

              例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

              大家想一想這15元的利潤是怎么來的?

              標價的80%(即售價)-成本=15

              若設這種服裝每件的成本是x元,那么

              每件服裝的標價為:(1+40%)x

              每件服裝的實際售價為:(1+40%)x·80%

              每件服裝的利潤為:(1+40%)x·80%—x

              由等量關系,列出方程:

             。1+40%)x·80%—x=15

              解方程,得x=125

              答:每件服裝的成本是125元。

              三、鞏固練習

              教科書第15頁,練習1、2。

              四、小結

              當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學問題,然后分析數(shù)學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據(jù)題意首先尋找“等量關系”。

              五、作業(yè)

              教科書第16頁,習題6.3.1,第4、5題。

            初二數(shù)學教案11

              通過學生的討論,使學生更清楚以下事實:

              (1)分解因式與整式的乘法是一種互逆關系;

              (2)分解因式的結果要以積的形式表示;

              (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式 的次數(shù);

              (4)必須分解到每個多項式不能再分解為止。

              活動5:應用新知

              例題學習:

              P166例1、例2(略)

              在教師的.引導下,學生應用提公因式法共同完成例題。

              讓學生進一步理解提公因式法進行因式分解。

              活動6:課堂練習

              1.P167練習;

              2. 看誰連得準

              x2-y2 (x+1)2

              9-25 x 2 y(x -y)

              x 2+2x+1 (3-5 x)(3+5 x)

              xy-y2 (x+y)(x-y)

              3.下列哪些變形是因式分解,為什么?

              (1)(a+3)(a -3)= a 2-9

              (2)a 2-4=( a +2)( a -2)

              (3)a 2-b2+1=( a +b)( a -b)+1

              (4)2πR+2πr=2π(R+r)

              學生自主完成練習。

              通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

              活動7:課堂小結

              從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?

              學生發(fā)言。

              通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數(shù)學思想的理解。

              活動8:課后作業(yè)

              課本P170習題的第1、4大題。

              學生自主完成

              通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。

              板書設計(需要一直留在黑板上主板書)

              15.4.1提公因式法 例題

              1.因式分解的定義

              2.提公因式法

            初二數(shù)學教案12

              一、教學目標

              1.掌握矩形的定義,知道矩形與平行四邊形的關系.

              2.掌握矩形的性質定理.

              3.使學生能應用矩形定義、性質等知識,解決簡單的證明題和計算題,進一步培養(yǎng)學生的分析能力.

              4.通過性質的學習,體會矩形的應用美.

              二、教法設計

              觀察、啟發(fā)、總結、提高,類比探討,討論分析,啟發(fā)式.

              三、重點、難點及解決辦法

              1.教學重點:矩形的性質及其推論.

              2.教學難點:矩形的本質屬性及性質定理的綜合應用.

              四、課時安排

              1課時

              五、教具學具準備

              教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具

              六、師生互動活動設計

              教具演示、創(chuàng)設情境,觀察猜想,推理論證

              七、教學步驟

              【復習提問】

              什么叫平行四邊形?它和四邊形有什么區(qū)別?

              【引入新課】

              我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質外,還有它的特殊性質,同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).

              【講解新課】

              制一個活動的平行四邊形教具,堂上進行演示圖,使學生注意觀察四邊形角的變化,當變到一個角是直角時,指出這時平行四邊形是矩形,使學生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).

              矩形的性質:

              既然矩形是一種特殊的平行四邊形,就應具有平行四邊形性質,同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的.條件,因而它就增加了一些特殊性質.

              繼續(xù)演示教具,當它變成矩形時,學生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結論),指出觀察出來的結論不能做為定理,需要證明.引導學生利用平行四邊形角的性質證明得出.

              矩形性質定理1:矩形的四個角都是直角.

              矩形性質定理2:矩形對角線相等.

              由矩形性質定理2我們可以得到

              推論:直角三角形斜邊上的中線等于斜邊的一半.

              (這實際上是 △的一個重要性質,即 △斜邊中點到三頂點的距離相等,它在求線段長或線段部分關系時經(jīng)常用到)

              例1 已知如圖1 矩形 的兩條對角線相交于點, , ,求矩形對角線的長.(按教材的格式)

              (強調這種計算題的解題格式,防止學生離開幾何元素之間的關系,而單純進行代數(shù)計算)

              【總結、擴展】

              1.小結:(用投影打出)

              (1)矩形、平行四邊形、四邊形從屬關系如圖.

              (2)矩形性質.

              1.具有平行四邊形的所有性質.

              2.特有性質:四個角都是直角,對角線相等.

              3.思考題:已知如圖, 是矩形 對角線交點, 平分 , ,求 的度數(shù)

              八、布置作業(yè)

              教材P158中2、5,P195中7.

              九、板書設計

              十、隨堂練習

              教材P146中1、2、3、4

            初二數(shù)學教案13

              一、學生情況分析及改進提高措施:

              學生們經(jīng)過兩年的學習,已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學習習慣,掌握了一些科學的學習方法,學會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎知識和基本技能打得也比較扎實,對數(shù)學學習有著濃厚的興趣,樂于參與到學習活動中去,特別是對一些動手操作,合作學習,實踐活動等學習內容尤為感興趣,因此,在教學中應多設計一些活動,引導學生進行獨立思考與合作交流,幫助學生積累參加數(shù)學學習活動的經(jīng)驗。

              在數(shù)學知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學會了辨認八個方位;掌握了萬以內數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應的知識解決實際生活中的問題?傊@些技能和知識點都為本學期進一步學習新知識打下了堅實的基礎,他們愛學數(shù)學的熱情,以及對數(shù)學的.感悟能力會在本學期進一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。

              具體提高措施是:

              1.從學生的年齡特點出發(fā),多采用情境活動式教學,培養(yǎng)學生的參與意識。兩班學生都能根據(jù)教師給出的情境獲取相關的數(shù)學信息,并能根據(jù)有效信息提出數(shù)學問題,能積極投入到探索問題的活動中去,絕大部分學生能夠在課堂上主動的研究問題,獲取知識。

              2.在課堂教學中,多增添一些與學生生活相關的利于孩子理解的問題,讓學生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結合學生的生活實際,將問題生活化,讓學生從生活中獲取到更多的解決問題的素材。

              3.課后練習注重增添以學習內容為主的相關實踐練習,加強各學科之間的聯(lián)系,少一些呆板的練習,提高練習的實踐性和趣味性。在上學期的教學中,我發(fā)現(xiàn)學生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學與科學課相結合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學生完成作業(yè)的積極性特別高。我為了讓學生了解長度單位,讓他們從成語詞典上收集有關長度單位的成語,通過對詞語的理解把握其表示的長度。

              4.加強學校教育和家庭教育的聯(lián)系。關注學生的平時學習情況,與學生家長多溝通交流。

              二、本冊教材分析

              本冊教材充分體現(xiàn)了新《課程標準》的理念,以學生的數(shù)學活動實踐為學習內容,教材創(chuàng)設了生動有趣的情境,引導學生在解決現(xiàn)實問題的過程中獲得對數(shù)學知識的理解和體驗。教學內容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復習,一個總復習。具體特點是:

              1.在數(shù)與代數(shù)的學習中,重視動手操作與抽象概括相結合,體驗乘、除法意義,發(fā)展了學生的數(shù)感和符號感。

              2.在空間和圖形學習中,從學生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。

              3.教材為教師留下了創(chuàng)造空間,可結合自身教學要求,生發(fā)新的教學設想,內化自己的教學設計。

              三、總體教學目標:

              (一)、知識與技能

              1.在單元學習中,學生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。

              2.學平面圖形的周長,會進行周長的計算。

              (二)、實踐能力培養(yǎng)

              1.觀察物體,引導學生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。

              2.結合生活情境,感受并認識質量單位。

              3.經(jīng)歷對生活中某些現(xiàn)象進行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進行邏輯推理、判斷其結果。

              (三)、情感與態(tài)度

              1、讓學生在觀察和操作的學習活動中,能夠感受到思考的條理性和合理性。

              2、教師重視對學生數(shù)學學習過程的評價,讓他們在感受到樂趣之外,應具備必要的學習自信心,養(yǎng)成良好的學習習慣。

              教研專題:

              創(chuàng)設課堂學習情境,有效培養(yǎng)創(chuàng)新意識。

              個人專題:

              在情境中培養(yǎng)學生的自主學習意識,提高課堂的有效性。

            初二數(shù)學教案14

              教學目標

              1、知識與技能

              了解因式分解的意義,以及它與整式乘法的關系、

              2、過程與方法

              經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用、

              3、情感、態(tài)度與價值觀

              在探索因式分解的方法的活動中,培養(yǎng)學生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學知識的內在含義與價值、

              重、難點與關鍵

              1、重點:了解因式分解的意義,感受其作用、

              2、難點:整式乘法與因式分解之間的`關系、

              3、關鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解、

              教學方法

              采用“激趣導學”的教學方法、

              教學過程

              一、創(chuàng)設情境,激趣導入

              【問題牽引】

              請同學們探究下面的2個問題:

              問題1:720能被哪些數(shù)整除?談談你的想法、

              問題2:當a=102,b=98時,求a2-b2的值、

              二、豐富聯(lián)想,展示思維

              探索:你會做下面的填空嗎?

              1、ma+mb+mc=()();

              2、x2-4=()();

              3、x2-2xy+y2=()2、

              【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式、

              三、小組活動,共同探究

              【問題牽引】

              (1)下列各式從左到右的變形是否為因式分解:

             、(x+1)(x-1)=x2-1;

              ②a2-1+b2=(a+1)(a-1)+b2;

             、7x-7=7(x-1)、

              (2)在下列括號里,填上適當?shù)捻,使等式成立?/p>

              ①9x2(______)+y2=(3x+y)(_______);

             、趚2-4xy+(_______)=(x-_______)2、

              四、隨堂練習,鞏固深化

              課本練習、

              【探研時空】計算:993-99能被100整除嗎?

              五、課堂總結,發(fā)展?jié)撃?/strong>

              由學生自己進行小結,教師提出如下綱目:

              1、什么叫因式分解?

              2、因式分解與整式運算有何區(qū)別?

              六、布置作業(yè),專題突破

              選用補充作業(yè)、

              板書設計

            初二數(shù)學教案15

              教學目標

              1、初步掌握頻率分布直方圖的概念,能繪制有關連續(xù)型統(tǒng)計量的直方圖;

              2、讓學生進一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

              教學重點

              掌握頻率分布直方圖概念及其應用;

              教學難點

              繪制連續(xù)統(tǒng)計量的直方圖

              教學過程

             、瘢岢鰡栴},創(chuàng)設情境,引入新課:

              問題:我們班準備從63名同學中挑選出身高相差不多的40名同學參加比賽,那么這個想法可以實現(xiàn)嗎?應該選擇身高在哪個范圍的學生參加?

              63名學生的身高數(shù)據(jù)如下:

              158158160168159159151158159

              168158154158154169158158158

              159167170153160160159159160

              149163163162172161153156162

              162163157162162161157157164

              155156165166156154166164165

              156157153165159157155164156

              解:(確定組距)最大值為172,最小值為149,他們的差為23

             。ㄉ砀選的變化范圍在23厘米,)

             。ǚ纸M劃記)頻數(shù)分布表:

              身高(x)劃記頻數(shù)(學生人數(shù))

              149≤x<1522

              152≤x<1556

              155≤x<15812

              158≤x<16119

              161≤<16410

              164≤x<1678

              167≤x<1704

              170≤x<1732

              從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學生中選隊員

             。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)

              探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應分成幾個組,這樣做能否選出身高比較整齊的`隊員?

              分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。

              歸納:組距和組數(shù)的確定沒有固定的標準,要憑借經(jīng)驗和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當數(shù)據(jù)在100個以內時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。

              我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎上畫出來。

              首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數(shù)為0的點,在上方圖的左邊。147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數(shù)折線圖。

              頻數(shù)折線圖也可以不通過直方圖直接畫出。

              根據(jù)表12.2-2,求了各個小組兩個端點的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標,各小組對應的頻數(shù)為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數(shù)分布折線圖如課本P73圖。

              II課堂小結:

              (1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

             。2)組距和組數(shù)沒有確定標準,當數(shù)據(jù)在1000個以內時,通常分成5~12組

              (3)如果取個長方形上邊的中點,可以得到頻數(shù)折線圖

              (4)求各小組兩個斷點的平均數(shù),這些平均數(shù)叫組中值。

            【初二數(shù)學教案】相關文章:

            初二數(shù)學教案11-02

            初二數(shù)學教案【熱門】12-22

            初二數(shù)學教案【薦】12-22

            【熱】初二數(shù)學教案12-23

            【推薦】初二數(shù)學教案12-23

            初二數(shù)學教案【熱】12-24

            《矩形》初二的數(shù)學教案12-02

            【薦】初二數(shù)學教案12-19

            【精】初二數(shù)學教案12-19

            【熱門】初二數(shù)學教案12-20