亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>《一元二次方程》數(shù)學(xué)教案

            《一元二次方程》數(shù)學(xué)教案

            時間:2023-02-12 14:08:24 數(shù)學(xué)教案 我要投稿

            《一元二次方程》數(shù)學(xué)教案

              作為一名教學(xué)工作者,可能需要進(jìn)行教案編寫工作,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編幫大家整理的《一元二次方程》數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

            《一元二次方程》數(shù)學(xué)教案1

              【教學(xué)目標(biāo)】

              (1)理解一元二次方程的概念

             。2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

              (2)會用因式分解法解一元二次方程

              【教學(xué)重點(diǎn)】

              一元二次方程的概念、一元二次方程的一般形式

              【教學(xué)難點(diǎn)】

              因式分解法解一元二次方程

              【教學(xué)過程】

              (一)創(chuàng)設(shè)情景,引入新課

              實(shí)際例子引入:列出的方程分別為X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

              由學(xué)生說出這幾個方程的'共同特征,從而引出一元二次方程的概念。

             。ǘ┬率

              1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)

              2:一元二次方程的一般形式(形如aX+bX+c=0)

              任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零

              3:講解例子

              4:利用因式分解法解一元二次方程

              5:講解例子

              6:一般步驟

             。ㄈ┬〗Y(jié)

              (四)布置作業(yè)

            《一元二次方程》數(shù)學(xué)教案2

              教學(xué)內(nèi)容: 12.1 用公式解一元二次方程(一)

              教學(xué)目標(biāo):

              知識與技能目標(biāo):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.

              過程與方法目標(biāo): 1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.

              情感與態(tài)度目標(biāo):由知識來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.,數(shù)學(xué)教案-用公式法解一元二次方程。

              教學(xué)重、難點(diǎn)與關(guān)鍵:

              重點(diǎn):一元二次方程的意義及一般形式.

              難點(diǎn):正確識別一般式中的“項”及“系數(shù)”。

              教輔工具:

              教學(xué)程序設(shè)計:

              程序

              教師活動

              學(xué)生活動

              備注

              創(chuàng)設(shè)

              問題

              情景

              1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實(shí)際操作一下剛才演示的過程.學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.

              2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?

              教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.

              板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.

              學(xué)生看投影并思考問題

              通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實(shí)際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的'解法在本章中處于非常重要的地位.

              探

              究

              新

              知

              1

              1.復(fù)習(xí)提問

             。1)什么叫做方程?曾學(xué)過哪些方程?

             。2)什么叫做一元一次方程?“元”和“次”的含義?

             。3)什么叫做分式方程?

              2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?

              引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.

              整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.

              一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.

              3.練習(xí):指出下列方程,哪些是一元二次方程?

             。1)x(5x-2)=x(x+1)+4x2;

             。2)7x2+6=2x(3x+1);

            《一元二次方程》數(shù)學(xué)教案3

              一、教材分析:

              1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來解決實(shí)際問題。本節(jié)仍是進(jìn)一步討論如何建立和利用一元二次方程模型來解決實(shí)際問題,只是在問題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。

              2、教學(xué)目標(biāo)要求:

             。1)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實(shí)世界的一個有效的數(shù)學(xué)模型;

             。2)能根據(jù)具體問題的實(shí)際意義,檢驗結(jié)果是否合理;

             。3)經(jīng)歷將實(shí)際問題抽象為代數(shù)問題的過程,探索問題中的數(shù)量關(guān)系,并能運(yùn)用一元二次方程對之進(jìn)行描述;

             。4)通過用一元二次方程解決身邊的問題,體會數(shù)學(xué)知識應(yīng)用的價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用。

              3、教學(xué)重點(diǎn)和難點(diǎn):

              重點(diǎn):列一元二次方程解與面積有關(guān)問題的應(yīng)用題。

              難點(diǎn):發(fā)現(xiàn)問題中的等量關(guān)系。

              二.教法、學(xué)法分析:

              1、本節(jié)課的設(shè)計中除了探究3教師參與多一些外,其余時間都堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,教師只注重點(diǎn)、引、激、評,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。

              2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準(zhǔn)問題中的數(shù)量關(guān)系,從而準(zhǔn)確列出方程來解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動都由生生交流,兵教兵從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

              三.教學(xué)流程分析:

              本節(jié)課是新授課,根據(jù)學(xué)生的知識結(jié)構(gòu),整個課堂教學(xué)流程大致可分為:

              活動1復(fù)習(xí)回顧解決課前參與

              活動2封面設(shè)計問題的探究

              活動3草坪規(guī)劃問題的延伸

              活動4課堂回眸

              這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

              活動1復(fù)習(xí)回顧解決課前參與

              由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問題。

              活動2封面設(shè)計問題的探究

              通過學(xué)生自己獨(dú)立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對“正中央矩形與封面長寬比例相同”題意的理解,使學(xué)生明白中央矩形長寬比為9:7,從而進(jìn)一步突破難點(diǎn):上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的`列法,以及取法。講解中注重簡便設(shè)法及解法的指導(dǎo)與評價。

              活動3草坪規(guī)劃問題的延伸

              放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。

              活動4課堂回眸

              本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。

            《一元二次方程》數(shù)學(xué)教案4

              一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。

              根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個重要定理。這是因為通過韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達(dá)定理對后面函數(shù)的學(xué)習(xí)研究也是作用非凡。

              通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的`熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。

              通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。

              (二)重點(diǎn)、難點(diǎn)

              一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。

              (三)教學(xué)目標(biāo)

              1、知識目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。

            《一元二次方程》數(shù)學(xué)教案5

              教學(xué)目標(biāo)

              1. 了解整式方程和一元二次方程的概念;

              2. 知道一元二次方程的一般形式,會把一元二次方程化成一般形式,一元二次方程。

              3. 通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

              教學(xué)重點(diǎn)和難點(diǎn)

              重點(diǎn):一元二次方程的概念和它的一般形式。

              難點(diǎn):對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

              教學(xué)建議:

              1. 教材分析:

              1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

              2)重點(diǎn)、難點(diǎn)分析

              理解一元二次方程的定義:

              是一元二次方程 的重要組成部分。方程 ,只有當(dāng) 時,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

             。1)一元二次方程的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合一元二次方程的定義。

             。2)條件是用“關(guān)于 的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的一元二次方程 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。

             。3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是一元二次方程,解題時就會有不同的結(jié)果。

              教學(xué)目的

              1.了解整式方程和一元二次方程的概念;

              2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

              3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

              教學(xué)難點(diǎn)和難點(diǎn): 重點(diǎn):

              1.一元二次方程的有關(guān)概念

              2.會把一元二次方程化成一般形式

              難點(diǎn): 一元二次方程的含義.

              教學(xué)過程設(shè)計

              一、引入新課

              引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?

              分析:1.要解決這個問題,就要求出鐵片的長和寬。

              2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。

              3.讓學(xué)生自己列出方程 ( x(x十5)=150 )

              深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?

              二、新課

              1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來,初中數(shù)學(xué)教案《一元二次方程》。事實(shí)上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的`還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)

              2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)

              3.強(qiáng)化一元二次方程的概念

              下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?

              (1)3x十2=5x—3:

              (2)x2=4

              (3)(x十3)(3x·4)=(x十2)2;

              (4)(x—1)(x—2)=x2十8

              從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。

              4. 一元二次方程概念的延伸

              提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?

              引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式

              ax2+bx+c=0 (a≠0)

              1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。

              2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.

              3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。

              強(qiáng)化概念(課本P6)

              1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:

              (1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

             。4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

              2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:

              (1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

              課堂小節(jié)

              (1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);

              (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;

              (3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).

              課外作業(yè):略

            《一元二次方程》數(shù)學(xué)教案6

              課題:一元二次方程實(shí)數(shù)根錯例剖析課

              【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

              【課前練習(xí)】

              1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。

              2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實(shí)數(shù)根,當(dāng)△_______時,方程有兩個不相等的實(shí)數(shù)根,當(dāng)△________時,方程沒有實(shí)數(shù)根。

              【典型例題】

              例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

              (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

              錯答: B

              正解: C

              錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。

              例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

              (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

              錯解 :B

              正解:D

              錯因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

              例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實(shí)根,求k的取值范圍。

              錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

              錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實(shí)上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實(shí)根。

              正解: -1≤k<2且k≠

              例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實(shí)數(shù)根,當(dāng)x12+x22=15時,求m的值。

              錯解:由根與系數(shù)的關(guān)系得

              x1+x2= -(2m+1), x1x2=m2+1,

              ∵x12+x22=(x1+x2)2-2 x1x2

             。絒-(2m+1)]2-2(m2+1)

              =2 m2+4 m-1

              又∵ x12+x22=15

              ∴ 2 m2+4 m-1=15

              ∴ m1 = -4 m2 = 2

              錯因剖析:漏掉了一元二次方程有兩個實(shí)根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。

              正解:m = 2

              例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

              錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

              ∵ △≥0

              ∴ 16 m+20≥0,

              ∴ m≥ -5/4

              又 ∵ m2-1≠0,

              ∴ m≠±1

              ∴ m的取值范圍是m≠±1且m≥ -

              錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠蹋杂袑?shí)數(shù)根。

              正解:m的取值范圍是m≥-

              例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的'整數(shù)根。

              錯解:∵方程有整數(shù)根,

              ∴△=9-4a>0,則a<2.25

              又∵a是非負(fù)數(shù),∴a=1或a=2

              令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

              ∴方程的整數(shù)根是x1= -1, x2= -2

              錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

              正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

              【練習(xí)】

              練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實(shí)數(shù)根x1、x2。

             。1)求k的取值范圍;

             。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

              解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

              ∴當(dāng)k< 時,方程有兩個不相等的實(shí)數(shù)根。

             。2)存在。

              如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

              ∴當(dāng)k= 時,方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

              讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

              解:上面解法錯在如下兩個方面:

             。1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實(shí)數(shù)根。

             。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

              練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

              解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=

             。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4

              ∴當(dāng)a≥ -4且a≠0時,方程有實(shí)數(shù)根。

              又因為方程只有正實(shí)數(shù)根,設(shè)為x1,x2,則:

              x1+x2=- >0 ;

              x1. x2=- >0 解得 :a<0

              綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實(shí)數(shù)根。

              【小結(jié)】

              以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

              1、運(yùn)用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

              2、運(yùn)用根與系數(shù)關(guān)系時,△≥0是前提條件。

              3、條件多面時(如例5、例6)考慮要周全。

              【布置作業(yè)】

              1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

              2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。

              求證:關(guān)于x的方程

              (m-5)x2-2(m+2)x + m=0一定有一個或兩個實(shí)數(shù)根。

              考題匯編

              1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

              2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

              (1)若方程的一個根為1,求m的值。

             。2)m=5時,原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請說明理由。

              3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

              4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

            《一元二次方程》數(shù)學(xué)教案7

              第1教時

              教學(xué)內(nèi)容: 12.1 用公式解一元二次方程(一)

              教學(xué)目標(biāo):

              知識與技能目標(biāo):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.

              過程與方法目標(biāo): 1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.

              情感與態(tài)度目標(biāo):由知識來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.。

              教學(xué)重、難點(diǎn)與關(guān)鍵:

              重點(diǎn):一元二次方程的意義及一般形式.

              難點(diǎn):正確識別一般式中的“項”及“系數(shù)”。

              教輔工具:

              教學(xué)程序設(shè)計:

              程序

              1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實(shí)際操作一下剛才演示的過程.學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.

              2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?

              教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.

              板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的'求知欲和學(xué)習(xí)興趣.

              學(xué)生看投影并思考問題

              通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實(shí)際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.

              1

              1.復(fù)習(xí)提問

             。1)什么叫做方程?曾學(xué)過哪些方程?

             。2)什么叫做一元一次方程?“元”和“次”的含義?

             。3)什么叫做分式方程?

              2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?

              引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.

              整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.

              一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.

              3.練習(xí):指出下列方程,哪些是一元二次方程?

             。1)x(5x-2)=x(x+1)+4x2;

             。2)7x2+6=2x(3x+1);

             。3)

             。4)6x2=x;

             。5)2x2=5y;

              (6)-x2=0

              4.任何一個一元二次方程都可以化為一個固定的形式,這個形式就是一元二次方程的一般形式.

              一元二次方程的一般形式:ax2+bx+c=0(a≠0).a(chǎn)x2稱二次項,bx稱一次項,c稱常數(shù)項,a稱二次項系數(shù),b稱一次項系數(shù).

              一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對一元二次方程的概念的理解.

              5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項系數(shù),一次項系數(shù)及常數(shù)項?

              教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式.

              討論后回答

              學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,

              獨(dú)立完成

              加深理解

              學(xué)生試解

              問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊

              反饋訓(xùn)練應(yīng)用提高

              練習(xí)1:教材P.5中1,2.

              練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請分別指出其二次項系數(shù)、一次項系數(shù)、常數(shù)項:.

              (4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

              教師提問及恰當(dāng)?shù)囊龑?dǎo),對學(xué)生回答給出評價,通過此組練習(xí),加強(qiáng)對概念的理解和深化

              要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評價.題目答案不唯一,最好二次項系數(shù)化為正數(shù).

              小結(jié)提高

              (四)總結(jié)、擴(kuò)展

              引導(dǎo)學(xué)生從下面三方面進(jìn)行小結(jié).從方法上學(xué)到了什么方法?從知識內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?

              1.將實(shí)際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會知識來源于實(shí)際以及轉(zhuǎn)化為方程的思想方法.

              2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項系數(shù)、一次項系數(shù)及常數(shù)項.歸納所學(xué)過的整式方程.

              3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區(qū)別和聯(lián)系.強(qiáng)調(diào)“a≠0”這個條件有長遠(yuǎn)的重要意義.

              學(xué)生討論回答

              布置作業(yè)

              1.教材P.6 練習(xí)2.

              2.思考題:

              1)能不能說“關(guān)于x的整式方程中,含有x2項的方程叫做一元二次方程?”

              2)試說出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考).

              

            【《一元二次方程》數(shù)學(xué)教案】相關(guān)文章:

            《一元二次方程》教學(xué)反思03-09

            一元二次方程教學(xué)反思04-04

            九年級數(shù)學(xué)教案《實(shí)際問題與一元二次方程》03-09

            《一元二次方程》數(shù)學(xué)教學(xué)反思11-03

            一元二次方程的解法教學(xué)反思04-04

            一元二次方程的概念教學(xué)反思04-07

            解一元二次方程教學(xué)反思04-01

            一元二次方程的教學(xué)反思(通用19篇)09-23

            實(shí)際問題與一元二次方程教學(xué)反思04-02