亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>華東師大版八年級(jí)數(shù)學(xué)教案

            華東師大版八年級(jí)數(shù)學(xué)教案

            時(shí)間:2024-01-06 07:54:57 數(shù)學(xué)教案 我要投稿
            • 相關(guān)推薦

            華東師大版八年級(jí)數(shù)學(xué)教案例文

              作為一名為他人授業(yè)解惑的教育工作者,就難以避免地要準(zhǔn)備教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。我們應(yīng)該怎么寫教案呢?以下是小編精心整理的華東師大版八年級(jí)數(shù)學(xué)教案例文,歡迎閱讀,希望大家能夠喜歡。

            華東師大版八年級(jí)數(shù)學(xué)教案例文

            華東師大版八年級(jí)數(shù)學(xué)教案例文1

              一、內(nèi)容和內(nèi)容解析

              1.內(nèi)容

              三角形高線、中線及角平分線的概念、幾何語(yǔ)言表達(dá)及它們的畫法.

              2.內(nèi)容解析

              本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動(dòng)手操作及解決問(wèn)題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛(ài)生活、勇于探索的思想感情.

              理解三角形高、角平分線及中線概念到用幾何語(yǔ)言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問(wèn)題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備.

              本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的畫法,難點(diǎn)是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系.

              二、目標(biāo)和目標(biāo)解析

              1.教學(xué)目標(biāo)

              (1)理解三角形的高、中線與角平分線等概念;

              (2)會(huì)用工具畫三角形的高、中線與角平分線;

              2.教學(xué)目標(biāo)解析

              (1)經(jīng)歷畫圖實(shí)踐過(guò)程,理解三角形的.高、中線與角平分線等概念.

              (2)能夠熟練用幾何語(yǔ)言表達(dá)三角形的高、中線與角平分線的性質(zhì).

              (3)掌握三角形的高、中線與角平分線的畫法.

              (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn).

              三、教學(xué)問(wèn)題診斷分析

              三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對(duì)邊或?qū)吽诘闹本上.

              三角形的中線的理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn).

              三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上.而角的平分線是一條射線,即就是說(shuō)三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.

            華東師大版八年級(jí)數(shù)學(xué)教案例文2

              教學(xué)目標(biāo)

              1.知識(shí)與技能

              會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

              2.過(guò)程與方法

              經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

              3.情感、態(tài)度與價(jià)值觀

              培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值.

              重、難點(diǎn)與關(guān)鍵

              1.重點(diǎn):利用平方差公式分解因式.

              2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.

              3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).

              教學(xué)方法

              采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維.

              教學(xué)過(guò)程

              一、觀察探討,體驗(yàn)新知

              【問(wèn)題牽引】

              請(qǐng)同學(xué)們計(jì)算下列各式.

              (1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

              【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

              (1)(a+5)(a-5)=a2-52=a2-25;

              (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

              【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

              1.分解因式:a2-25;2.分解因式16m2-9n.

              【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

              (1)a2-25=a2-52=(a+5)(a-5).

              (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

              【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的.同時(shí),導(dǎo)出課題:用平方差公式因式分解.

              平方差公式:a2-b2=(a+b)(a-b).

              評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

              二、范例學(xué)習(xí),應(yīng)用所學(xué)

              【例1】把下列各式分解因式:(投影顯示或板書)

              (1)x2-9y2;(2)16x4-y4;

              (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

              (5)m2(16x-y)+n2(y-16x).

              【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

              【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

              【學(xué)生活動(dòng)】分四人小組,合作探究.

              解:(1)x2-9y2=(x+3y)(x-3y);

              (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

              (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

              (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

              (5)m2(16x-y)+n2(y-16x)

              =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

            華東師大版八年級(jí)數(shù)學(xué)教案例文3

              教學(xué)目標(biāo)

              1.知識(shí)與技能

              領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

              2.過(guò)程與方法

              經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.

              3.情感、態(tài)度與價(jià)值觀

              培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

              重、難點(diǎn)與關(guān)鍵

              1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

              2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

              3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的

              教學(xué)方法

              采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

              教學(xué)過(guò)程

              一、回顧交流,導(dǎo)入新知

              【問(wèn)題牽引】

              1.分解因式:

              (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

              (3)x2-0.01y2.

              【知識(shí)遷移】

              2.計(jì)算下列各式:

              (1)(m-4n)2;(2)(m+4n)2;

              (3)(a+b)2;(4)(a-b)2.

              【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

              3.分解因式:

              (1)m2-8mn+16n2(2)m2+8mn+16n2;

              (3)a2+2ab+b2;(4)a2-2ab+b2.

              【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:

              解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

              (3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

              【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

              二、范例學(xué)習(xí),應(yīng)用所學(xué)

              【例1】把下列各式分解因式:

              (1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

              (3)(x+y)2-14(x+y)+49;(4)+n4.

              【例2】如果x2+axy+16y2是完全平方,求a的值.

              【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的`平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

              三、隨堂練習(xí),鞏固深化

              課本P170練習(xí)第1、2題.

              【探研時(shí)空】

              1.已知x+y=7,xy=10,求下列各式的值.

              (1)x2+y2;(2)(x-y)2

              2.已知x+=-3,求x4+的值.

              四、課堂總結(jié),發(fā)展?jié)撃?/strong>

              由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過(guò)來(lái)寫,就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):

              a2-b2=(a+b)(a-b);

              a2±ab+b2=(a±b)2.

              在運(yùn)用公式因式分解時(shí),要注意:

              (1)每個(gè)公式的形式與特點(diǎn),通過(guò)對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來(lái)確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.

            華東師大版八年級(jí)數(shù)學(xué)教案例文4

              教學(xué)目標(biāo)

              1.知識(shí)與技能

              能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

              2.過(guò)程與方法

              使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

              3.情感、態(tài)度與價(jià)值觀

              培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

              重、難點(diǎn)與關(guān)鍵

              1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

              2.難點(diǎn):正確地確定多項(xiàng)式的公因式.

              3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

              教學(xué)方法

              采用“啟發(fā)式”教學(xué)方法.

              教學(xué)過(guò)程

              一、回顧交流,導(dǎo)入新知

              【復(fù)習(xí)交流】

              下列從左到右的變形是否是因式分解,為什么?

              (1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

              (3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

              (5)x2-2xy+y2=(x-y)2.

              問(wèn)題:

              1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

              2.多項(xiàng)式4x2-x和xy2-yz-y呢?

              請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說(shuō)明理由.

              【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

              概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

              二、小組合作,探究方法

              【教師提問(wèn)】多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

              【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的'公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

              三、范例學(xué)習(xí),應(yīng)用所學(xué)

              【例1】把-4x2yz-12xy2z+4xyz分解因式.

              解:-4x2yz-12xy2z+4xyz

              =-(4x2yz+12xy2z-4xyz)

              =-4xyz(x+3y-1)

              【例2】分解因式,3a2(x-y)3-4b2(y-x)2

              【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

              解法1:3a2(x-y)3-4b2(y-x)2

              =-3a2(y-x)3-4b2(y-x)2

              =-[(y-x)2?3a2(y-x)+4b2(y-x)2]

              =-(y-x)2[3a2(y-x)+4b2]

              =-(y-x)2(3a2y-3a2x+4b2)

              解法2:3a2(x-y)3-4b2(y-x)2

              =(x-y)2?3a2(x-y)-4b2(x-y)2

              =(x-y)2[3a2(x-y)-4b2]

              =(x-y)2(3a2x-3a2y-4b2)

              【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

              【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

              解:0.84×12+12×0.6-0.44×12

              =12×(0.84+0.6-0.44)

              =12×1=12.

              【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

              四、隨堂練習(xí),鞏固深化

              課本P167練習(xí)第1、2、3題.

              【探研時(shí)空】

              利用提公因式法計(jì)算:

              0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

              五、課堂總結(jié),發(fā)展?jié)撃?/strong>

              1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)公因式.在找公因式時(shí)應(yīng)注意:(1)系數(shù)要找公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

              2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.

              六、布置作業(yè),專題突破

              課本P170習(xí)題15.4第1、4(1)、6題.

              板書設(shè)計(jì)

            【華東師大版八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

            華東師大學(xué)習(xí)心得08-19

            北師大版八年級(jí)上冊(cè)數(shù)學(xué)教案10-14

            魯教版數(shù)學(xué)教案12-12

            華東師大培訓(xùn)心得體會(huì)08-06

            數(shù)學(xué)教案-北師大版08-17

            冀教版小學(xué)數(shù)學(xué)教案02-04

            數(shù)學(xué)教案-教室 - 北師大版08-16

            數(shù)學(xué)教案-乘車 - 北師大版08-16

            數(shù)學(xué)教案-玩具 - 北師大版08-16