- 相關(guān)推薦
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案
作為一位兢兢業(yè)業(yè)的人民教師,常常要寫(xiě)一份優(yōu)秀的教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。如何把教案做到重點(diǎn)突出呢?以下是小編幫大家整理的高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案,僅供參考,大家一起來(lái)看看吧。
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案1
教學(xué)目標(biāo)1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問(wèn)題。2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡(jiǎn)捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力。3.用類比思想加深對(duì)等差數(shù)列與等比數(shù)列概念和性質(zhì)的理解。教學(xué)重點(diǎn)與難點(diǎn)用方程的觀點(diǎn)認(rèn)識(shí)等差、等比數(shù)列的基礎(chǔ)知識(shí),從本質(zhì)上掌握公式。例題例1三個(gè)互不相等的實(shí)數(shù)成等差數(shù)列,如果適當(dāng)排列這三個(gè)數(shù)也可以成等比數(shù)列,又知這三個(gè)數(shù)的和為6,求這三個(gè)數(shù)。例2數(shù)列中,……,求的.值。例3有四個(gè)數(shù),前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩個(gè)數(shù)之和是21,中間兩個(gè)數(shù)的和是18,求這四個(gè)數(shù)。例4已知數(shù)列的前項(xiàng)的和,求數(shù)列前項(xiàng)的和。例5是否存在等比數(shù)列,其前項(xiàng)的和組成的數(shù)列也是等比數(shù)列?例6數(shù)列是首項(xiàng)為0的等差數(shù)列,數(shù)列是首項(xiàng)為1的等比數(shù)列,設(shè),數(shù)列的前三項(xiàng)依次為1,1,2,(1)求數(shù)列、的通項(xiàng)公式;
。2)求數(shù)列的前10項(xiàng)的和。例7已知數(shù)列滿足,.
(1)求證:數(shù)列是等比數(shù)列;
(2)求的表達(dá)式和的表達(dá)式。
作業(yè):
1.已知同號(hào),則是成等比數(shù)列的
。╝)充分而不必要條件(b)必要而不充分條件
。╟)充要條件(d)既不充分而也不必要條件
2.如果和是兩個(gè)等差數(shù)列,其中,那么等于
。╝)(b)(c)3(d)
3.若某等比數(shù)列中,前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為
(a)180(b)108(c)75(d)63
4.已知數(shù)列,對(duì)所有,其前項(xiàng)的積為,求的值,5.已知為等差數(shù)列,前10項(xiàng)的和為,前100項(xiàng)的和為,求前110項(xiàng)的和
6.等差數(shù)列中,依次抽出這個(gè)數(shù)列的第項(xiàng),組成數(shù)列,求數(shù)列的通項(xiàng)公式和前項(xiàng)和公式。
7.已知數(shù)列,(1)求通項(xiàng)公式;
(2)若,求數(shù)列的最小項(xiàng)的值;
(3)數(shù)列的前項(xiàng)和為,求數(shù)列前項(xiàng)的和.
8.三數(shù)成等比數(shù)列,若第二個(gè)數(shù)加4就成等差數(shù)列,再把這個(gè)等差數(shù)列的第三個(gè)數(shù)加上32又成等比數(shù)列,求這三個(gè)數(shù)。
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案2
教學(xué)設(shè)計(jì)示例
課題:等比數(shù)列前項(xiàng)和的公式
教學(xué)目標(biāo)
。1)通過(guò)教學(xué)使學(xué)生掌握等比數(shù)列前項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前項(xiàng)和。
。2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì)。
(3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再?gòu)囊话愕教厥獾霓q證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)腵學(xué)習(xí)態(tài)度。
教學(xué)重點(diǎn),難點(diǎn)
教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路。
教學(xué)用具
幻燈片,課件,電腦。
教學(xué)方法
引導(dǎo)發(fā)現(xiàn)法。
教學(xué)過(guò)程
一、新課引入:
。▎(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題:(幻燈片)
二、新課講解:
記,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2,當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對(duì)應(yīng)相等的,作差可以相互抵消。
(板書(shū))即,①
,②
、冢俚眉.
由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和,如何化簡(jiǎn)?
。ò鍟(shū))等比數(shù)列前項(xiàng)和公式
仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比,即
。ò鍟(shū))③兩端同乘以,得
、,③-④得⑤,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意的取值)
當(dāng)時(shí),由③可得(不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)
當(dāng)時(shí),由⑤得.
于是
反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如的數(shù)列的和,其中為等差數(shù)列,為等比數(shù)列。
(板書(shū))例題:求和:.
設(shè),其中為等差數(shù)列,為等比數(shù)列,公比為,利用錯(cuò)位相減法求和。
解:,兩端同乘以,得
,兩式相減得
于是.
說(shuō)明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問(wèn)題轉(zhuǎn)化為等比數(shù)列求和的問(wèn)題。
公式其它應(yīng)用問(wèn)題注意對(duì)公比的分類討論即可。
三、小結(jié):
1.等比數(shù)列前項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;
2.用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和。
四、作業(yè):略。
五、板書(shū)設(shè)計(jì):
等比數(shù)列前項(xiàng)和公式例題
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案3
等比數(shù)列的性質(zhì)
知能目標(biāo)解讀
1.結(jié)合等差數(shù)列的性質(zhì),了解等比數(shù)列的性質(zhì)和由來(lái)。
2.理解等比數(shù)列的性質(zhì)及應(yīng)用。
3.掌握等比數(shù)列的性質(zhì)并能綜合運(yùn)用。
重點(diǎn)難點(diǎn)點(diǎn)撥
重點(diǎn):等比數(shù)列性質(zhì)的運(yùn)用。
難點(diǎn):等比數(shù)列與等差數(shù)列的綜合應(yīng)用。
學(xué)習(xí)方法指導(dǎo)
1.在等比數(shù)列中,我們隨意取出連續(xù)三項(xiàng)及以上的數(shù),把它們重新依次看成一個(gè)新的數(shù)列,則此數(shù)列仍為等比數(shù)列,這是因?yàn)殡S意取出連續(xù)三項(xiàng)及以上的數(shù),則以取得的第一個(gè)數(shù)為首項(xiàng),且仍滿足從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都是同一個(gè)常數(shù),且這個(gè)常數(shù)量仍為原數(shù)列的公比,所以,新形成的數(shù)列仍為等比數(shù)列。
2.在等比數(shù)列中,我們?nèi)稳∠陆菢?biāo)成等差的三項(xiàng)及以上的數(shù),按原數(shù)列的先后順序排列所構(gòu)成的數(shù)列仍是等比數(shù)列,簡(jiǎn)言之:下角標(biāo)成等差,項(xiàng)成等比。我們不妨設(shè)從等比數(shù)列{an}中依次取出的數(shù)為ak,ak+m,ak+2m,ak+3m,…,則===…=qm(q為原等比數(shù)列的公比),所以此數(shù)列成等比數(shù)列。
3.如果數(shù)列{an}是等比數(shù)列,公比為q,c是不等于零的常數(shù),那么數(shù)列{can}仍是等比數(shù)列,且公比仍為q;?{|an|}?也是等比,且公比為|q|.我們可以設(shè)數(shù)列{an}的公比為q,且滿足=q,則==q,所以數(shù)列{can}仍是等比數(shù)列,公比為q.同理,可證{|an|}也是等比數(shù)列,公比為|q|.
4.在等比數(shù)列{an}中,若m+n=t+s且m,n,t,s∈N+則aman=atas.理由如下:因?yàn)閍man=a1qm-1a1qn-1
=a21qm+n-2,atas=a1qt-1a1qs-1=a21qt+s-2,又因?yàn)閙+n=t+s,所以m+n-2=t+s-2,所以aman=atas.從此性質(zhì)還可得到,項(xiàng)數(shù)確定的等比數(shù)列,距離首末兩端相等的兩項(xiàng)之積等于首末兩項(xiàng)之積。
5.若{an},{bn}均為等比數(shù)列,公比分別為q1,q2,則
(1){anbn}仍為等比數(shù)列,且公比為q1q2.
(2){}仍為等比數(shù)列,且公比為.
理由如下:(1)=q1q2,所以{anbn}仍為等比數(shù)列,且公比為q1q2;(2)=,所以{}仍為等比數(shù)列,且公比為.
知能自主梳理
1.等比數(shù)列的項(xiàng)與序號(hào)的關(guān)系
(1)兩項(xiàng)關(guān)系
通項(xiàng)公式的推廣:
an=am(m、n∈N+).
(2)多項(xiàng)關(guān)系
項(xiàng)的運(yùn)算性質(zhì)
若m+n=p+q(m、n、p、q∈N+),則aman=.
特別地,若m+n=2p(m、n、p∈N+),則aman=.
2.等比數(shù)列的項(xiàng)的對(duì)稱性
有窮等比數(shù)列中,與首末兩項(xiàng)“等距離”的兩項(xiàng)之積等于首末兩項(xiàng)的積(若有中間項(xiàng)則等于中間項(xiàng)的平方),即a1an=a2=ak=a2(n為正奇數(shù)).
[答案] 1.qn-m apaq a2p
2.an-1 an-k+1
思路方法技巧
命題方向 運(yùn)用等比數(shù)列性質(zhì)an=amqn-m(m、n∈N+)解題
[例1] 在等比數(shù)列{an}中,若a2=2,a6=162,求a10.
[分析] 解答本題可充分利用等比數(shù)列的性質(zhì)及通項(xiàng)公式,求得q,再求a10.
[解析] 解法一:設(shè)公比為q,由題意得
a1q=2a1=a1=-
,解得,或.
a1q5=162q=3q=-3
∴a10=a1q9=×39=13122或a10=a1q9=-×(-3)9=13122.
解法二:∵a6=a2q4,∴q4===81,∴a10=a6q4=162×81=13122.
解法三:在等比數(shù)列中,由a26=a2a10得
a10===13122.
[說(shuō)明] 比較上述三種解法,可看出解法二、解法三利用等比數(shù)列的性質(zhì)求解,使問(wèn)題變得簡(jiǎn)單、明了,因此要熟練掌握等比數(shù)列的性質(zhì),在解有關(guān)等比數(shù)列的問(wèn)題時(shí),要注意等比數(shù)列性質(zhì)的應(yīng)用。
變式應(yīng)用1 已知數(shù)列{an}是各項(xiàng)為正的等比數(shù)列,且q≠1,試比較a1+a8與a4+a5的大小。
[解析] 解法一:由已知條件a1>0,q>0,且q≠1,這時(shí)
(a1+a8)-(a4+a5)=a1(1+q7-q3-q4)=a1(1-q3)(1-q4)
=a1(1-q)2(1+q+q2)(1+q+q2+q3)>0,顯然,a1+a8>a4+a5.
解法二:利用等比數(shù)列的性質(zhì)求解。
由于(a1+a8)-(a4+a5)=(a1-a4)-(a5-a8)
=a1(1-q3)-a5(1-q3)=(1-q3)(a1-a5).
當(dāng)0
當(dāng)q>1時(shí),此正數(shù)等比數(shù)列單調(diào)遞增,1-q3與a1-a5同為負(fù)數(shù),∵(a1+a8)-(a4+a5)恒正。
∴a1+a8>a4+a5.
命題方向運(yùn)用等比數(shù)列性質(zhì)aman=apaq(m,n,p,q∈N+,且m+n=p+q)解題
[例2] 在等比數(shù)列{an}中,已知a7a12=5,則a8a9a10a11=( )
A.10 B.25 C.50 D.75
[分析] 已知等比數(shù)列中兩項(xiàng)的積的問(wèn)題,常常離不開(kāi)等比數(shù)列的性質(zhì),用等比數(shù)列的性質(zhì)會(huì)大大簡(jiǎn)化運(yùn)算過(guò)程。
[答案] B
[解析] 解法一:∵a7a12=a8a11=a9a10=5,∴a8a9a10a11=52=25.
解法二:由已知得a1q6a1q11=a21q17=5,∴a8a9a10a11=a1q7a1q8a1q9a1q10=a41q34=(a21q17)2=25.
[說(shuō)明] 在等比數(shù)列的有關(guān)運(yùn)算中,常常涉及次數(shù)較高的指數(shù)運(yùn)算,若按照常規(guī)解法,往往是建立a1,q的方程組,這樣解起來(lái)很麻煩,為此我們經(jīng)常結(jié)合等比數(shù)列的性質(zhì),進(jìn)行整體變換,會(huì)起到化繁為簡(jiǎn)的效果。
變式應(yīng)用2 在等比數(shù)列{an}中,各項(xiàng)均為正數(shù),且a6a10+a3a5=41,a4a8=5,求a4+a8.
[解析] ∵a6a10=a28,a3a5=a24,∴a28+a24=41.
又∵a4a8=5,an>0,∴a4+a8===.
探索延拓創(chuàng)新
命題方向 等比數(shù)列性質(zhì)的綜合應(yīng)用
[例3] 試判斷能否構(gòu)成一個(gè)等比數(shù)列{an},使其滿足下列三個(gè)條件:
①a1+a6=11;②a3a4=;③至少存在一個(gè)自然數(shù)m,使am-1,am,am+1+依次成等差數(shù)列,若能,請(qǐng)寫(xiě)出這個(gè)數(shù)列的通項(xiàng)公式;若不能,請(qǐng)說(shuō)明理由。
[分析] 由①②條件確定等比數(shù)列{an}的通項(xiàng)公式,再驗(yàn)證是否符合條件③.
[解析] 假設(shè)能夠構(gòu)造出符合條件①②的等比數(shù)列{an},不妨設(shè)數(shù)列{an}的公比為q,由條件①②及a1a6=a3a4,得
a1+a6=11 a1=a1=
,解得,或
a1a6=a6=a6=.
a1=a1=
從而,或.
q=2q=
故所求數(shù)列的通項(xiàng)為an=2n-1或an=26-n.
對(duì)于an=2n-1,若存在題設(shè)要求的m,則
2am=am-1+(am+1+),得
2(2m-1)=2m-2+2m+,得
2m+8=0,即2m=-8,故符合條件的m不存在。
對(duì)于an=26-n,若存在題設(shè)要求的m,同理有
26-m-8=0,即26-m=8,∴m=3.
綜上所述,能夠構(gòu)造出滿足條件①②③的等比數(shù)列,通項(xiàng)為an=26-n.
[說(shuō)明] 求解數(shù)列問(wèn)題時(shí)應(yīng)注意方程思想在解題中的應(yīng)用。
變式應(yīng)用3 在等差數(shù)列{an}中,公差d≠0,a2是a1與a4的`等比中項(xiàng),已知數(shù)列a1,a3,ak1,ak2,…,akn,……成等比數(shù)列,求數(shù)列{kn}的通項(xiàng)kn.
[解析] 由題意得a22=a1a4,即(a1+d)2=a1(a1+3d),又d≠0,∴a1=d.
∴an=nd.
又a1,a3,ak1,ak2,……,akn,……成等比數(shù)列,∴該數(shù)列的公比為q===3.
∴akn=a13n+1.
又akn=knd,∴kn=3n+1.
所以數(shù)列{kn}的通項(xiàng)為kn=3n+1.
名師辨誤做答
[例4] 四個(gè)實(shí)數(shù)成等比數(shù)列,且前三項(xiàng)之積為1,后三項(xiàng)之和為1,求這個(gè)等比數(shù)列的公比。
[誤解] 設(shè)這四個(gè)數(shù)為aq-3,aq-1,aq,aq3,由題意得
a3q-3=1,①
aq-1+aq+aq3=1.②
由①得a=q,把a(bǔ)=q代入②并整理,得4q4+4q2-3=0,解得q2=或q2=-(舍去),故所求的公比為.
[辨析] 上述解法中,四個(gè)數(shù)成等比數(shù)列,設(shè)其公比為q2,則公比為正數(shù),但題設(shè)并無(wú)此條件,因此導(dǎo)致結(jié)果有誤。
[正解] 設(shè)四個(gè)數(shù)依次為a,aq,aq2,aq3,由題意得
(aq)3=1, 、
aq+aq2+aq3=1. ②
由①得a=q-1,把a(bǔ)=q-1代入②并整理,得4q2+4q-3=0,解得q=或q=-,故所求公比為或-.
課堂鞏固訓(xùn)練
一、選擇題
1.在等比數(shù)列{an}中,若a6=6,a9=9,則a3等于( )
A.4 B. C. D.3?
[答案] A?
[解析] 解法一:∵a6=a3q3,∴a3q3=6.?
a9=a6q3,∴q3==.
∴a3==6×=4.
解法二:由等比數(shù)列的性質(zhì),得
a26=a3a9,∴36=9a3,∴a3=4.
2.在等比數(shù)列{an}中,a4+a5=10,a6+a7=20,則a8+a9等于( )
A.90 B.30 C.70 D.40
[答案] D
[解析] ∵q2==2,?
∴a8+a9=(a6+a7)q2=20q2=40.
3.如果數(shù)列{an}是等比數(shù)列,那么( )?
A.數(shù)列{a2n}是等比數(shù)列 B.數(shù)列{2an}是等比數(shù)列
C.數(shù)列{lgan}是等比數(shù)列 D.數(shù)列{nan}是等比數(shù)列
[答案] A
[解析] 數(shù)列{a2n}是等比數(shù)列,公比為q2,故選A.
二、填空題
4.若a,b,c既成等差數(shù)列,又成等比數(shù)列,則它們的公比為.?
[答案] 1?
2b=a+c,[解析] 由題意知
b2=ac,解得a=b=c,∴q=1.
5.在等比數(shù)列{an}中,公比q=2,a5=6,則a8=.?
[答案] 48
[解析] a8=a5q8-5=6×23=48.
三、解答題
6.已知{an}為等比數(shù)列,且a1a9=64,a3+a7=20,求a11.?
[解析] ∵{an}為等比數(shù)列,?
∴a1a9=a3a7=64,又a3+a7=20,?
∴a3,a7是方程t2-20t+64=0的兩個(gè)根。?
∴a3=4,a7=16或a3=16,a7=4,?
當(dāng)a3=4時(shí),a3+a7=a3+a3q4=20,?
∴1+q4=5,∴q4=4.?
當(dāng)a3=16時(shí),a3+a7=a3(1+q4)=20,∴1+q4=,∴q4=.?
∴a11=a1q10=a3q8=64或1.
課后強(qiáng)化作業(yè)
一、選擇題
1.在等比數(shù)列{an}中,a4=6,a8=18,則a12=( )
A.24 B.30 C.54 D.108?
[答案] C?
[解析] ∵a8=a4q4,∴q4===3,∴a12=a8q4=54.
2.在等比數(shù)列{an}中,a3=2-a2,a5=16-a4,則a6+a7的值為( )
A.124 B.128 C.130 D.132
[答案] B?
[解析] ∵a2+a3=2,a4+a5=16,?
又a4+a5=(a2+a3)q2,∴q2=8.?
∴a6+a7=(a4+a5)q2=16×8=128.
3.已知{an}為等比數(shù)列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5等于( )
A.5 B.10 C.15 D.20?
[答案] A?
[解析] ∵a32=a2a4,a52=a4a6,?
∴a32+2a3a5+a52=25,∴(a3+a5)2=25,?
又∵an>0,∴a3+a5=5.
4.在正項(xiàng)等比數(shù)列{an}中,a1和a19為方程x2-10x+16=0的兩根,則a8a10a12等于( )
A.16 B.32 C.64 D.256?
[答案] C?
[解析] 由已知,得a1a19=16,?
又∵a1a19=a8a12=a102,∴a8a12=a102=16,又an>0,?
∴a10=4,∴a8a10a12=a103=64.
5.已知等比數(shù)列{an}的公比為正數(shù),且a3a9=2a25,a2=1,則a1=( )?
A. B. C. D.2?
[答案] B?
[解析] ∵a3a9=a26,又∵a3a9=2a25,?
∴a26=2a25,∴()2=2,?
∴q2=2,∵q>0,∴q=.
又a2=1,∴a1===.
6.在等比數(shù)列{an}中,an>an+1,且a7a11=6,a4+a14=5,則等于( )
A. B. C. D.6
[答案] A
a7a11=a4a14=6
[解析] ∵
a4+a14=5
a4=3a4=2
解得或.
a14=2a14=3
又∵an>an+1,∴a4=3,a14=2.
∴==.
7.已知等比數(shù)列{an}中,有a3a11=4a7,數(shù)列{bn}是等差數(shù)列,且b7=a7,則b5+b9等于( )
A.2 B.4 C.8 D.16
[答案] C
[解析] ∵a3a11=a72=4a7,∵a7≠0,∴a7=4,∴b7=4,∵{bn}為等差數(shù)列,∴b5+b9=2b7=8.
8.已知0
( )
A.等差數(shù)列? B.等比數(shù)列?
C.各項(xiàng)倒數(shù)成等差數(shù)列? D.以上都不對(duì)?
[答案] C?
[解析] ∵a,b,c成等比數(shù)列,∴b2=ac.?
又∵+=logna+lognc=lognac
=2lognb=,?
∴+=.
二、填空題
9.等比數(shù)列{an}中,an>0,且a2=1+a1,a4=9+a3,則a5-a4等于.
[答案] 27
[解析] 由題意,得a2-a1=1,a4-a3=(a2-a1)q2=9,∴q2=9,又an>0,∴q=3.?
故a5-a4=(a4-a3)q=9×3=27.
10.已知等比數(shù)列{an}的公比q=-,則等于.
[答案] -3
[解析] =
==-3.
11.等比數(shù)列{an}中,an>0,且a5a6=9,則log3a2+log3a9=.
[答案] 2
[解析] ∵an>0,∴l(xiāng)og3a2+log3a9=log3a2a9
=log3a5a6=log39=log332=2.
12.(20xx廣東文,11)已知{an}是遞增等比數(shù)列,a2=2,a4-a3=4,則此數(shù)列的公比q= .
[答案] 2?
[解析] 本題主要考查等比數(shù)列的基本公式,利用等比數(shù)列的通項(xiàng)公式可解得。
解析:a4-a3=a2q2-a2q=4,?
因?yàn)閍2=2,所以q2-q-2=0,解得q=-1,或q=2.
因?yàn)閍n為遞增數(shù)列,所以q=2.
三、解答題
13.在等比數(shù)列{an}中,已知a4a7=-512,a3+a8=124,且公比為整數(shù),求a10.
[解析] ∵a4a7=a3a8=-512,a3+a8=124a3=-4a3=128
∴,解得或.
a3a8=-512a8=128a8=-4
又公比為整數(shù),∴a3=-4,a8=128,q=-2.
∴a10=a3q7=(-4)×(-2)7=512.
14.設(shè){an}是各項(xiàng)均為正數(shù)的等比數(shù)列,bn=log2an,若b1+b2+b3=3,b1b2b3=-3,求此等比數(shù)列的通項(xiàng)公式an.?
[解析] 由b1+b2+b3=3,?
得log2(a1a2a3)=3,∴a1a2a3=23=8,∵a22=a1a3,∴a2=2,又b1b2b3=-3,設(shè)等比數(shù)列{an}的公比為q,得?
log2()log2(2q)=-3.
解得q=4或,∴所求等比數(shù)列{an}的通項(xiàng)公式為
an=a2qn-2=22n-3或an=25-2n.
15.某工廠20xx年生產(chǎn)某種機(jī)器零件100萬(wàn)件,計(jì)劃到20xx年把產(chǎn)量提高到每年生產(chǎn)121萬(wàn)件。如果每一年比上一年增長(zhǎng)的百分率相同,這個(gè)百分率是多少?20xx年生產(chǎn)這種零件多少萬(wàn)件?.
[解析] 設(shè)每一年比上一年增長(zhǎng)的百分率為x,則從20xx年起,連續(xù)3年的產(chǎn)量依次為a1=100,a2=a1(1+x),a3=a2(1+x),即a1=100,a2=100(1+x),a3=100(1+x)2,成等比數(shù)列。
由100(1+x)2=121得(1+x)2=1.21,∴1+x=1.1或1+x=-1.1,?
∴x=0.1或x=-2.1(舍去),?
a2=100(1+x)=110(萬(wàn)件),?
所以每年增長(zhǎng)的百分率為10%,20xx年生產(chǎn)這種零件110萬(wàn)件。
16.等差數(shù)列{an}中,a4=10,且a3,a6,a10成等比數(shù)列。求數(shù)列{an}前20項(xiàng)的和S20.
[解析] 設(shè)數(shù)列{an}的公差為d,則a3=a4-d=10-d,a6=a4+2d=10+2d,a10=a4+6d=10+6d.
由a3,a6,a10成等比數(shù)列得a3a10=a26,?
即(10-d)(10+6d)=(10+2d)2,?
整理得10d2-10d=0,解得d=0或d=1.
當(dāng)d=0時(shí),S20=20a4=200,?
當(dāng)d=1時(shí),a1=a4-3d=10-3×1=7,?
于是,S20=20a1+d=20×7+190=330.
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案4
教學(xué)目標(biāo)
1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題。
。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;
。2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);
。3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題。
2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì)。
3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度。
教學(xué)建議
教材分析
。1)知識(shí)結(jié)構(gòu)
是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用。
。2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用。
、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn)。
、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn)。
③對(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn)。
教學(xué)建議
。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用。
。2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義。也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義。
(3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解。
。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法。啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫(huà)數(shù)列的圖象。
(5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn)。
(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用。
教學(xué)設(shè)計(jì)示例
課題:的概念
教學(xué)目標(biāo)
1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式。
2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力。
3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的.精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo)。
教學(xué)用具
投影儀,多媒體軟件,電腦。
教學(xué)方法
討論、談話法。
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn)。(幻燈片)
、伲2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
、243,81,27,9,3,1,…
、31,29,27,25,23,21,19,…
、1,-1,1,-1,1,-1,1,-1,…
、1,-10,100,-1000,10000,-100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).
二、講解新課
請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題。假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
。ò鍟(shū))
1.的定義(板書(shū))
根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義。學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的。教師寫(xiě)出的定義,標(biāo)注出重點(diǎn)詞語(yǔ)。
請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是。學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例。而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是。教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):
2.對(duì)定義的認(rèn)識(shí)(板書(shū))
(1)的首項(xiàng)不為0;
(2)的每一項(xiàng)都不為0,即;
問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?
。3)公比不為0
用數(shù)學(xué)式子表示的定義。
是①.在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為是?為什么不能?
式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式。
3.的通項(xiàng)公式(板書(shū))
問(wèn)題:用和表示第項(xiàng)
、俨煌耆珰w納法
②疊乘法,…,這個(gè)式子相乘得,所以
。ò鍟(shū))(1)的通項(xiàng)公式
得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式。
。ò鍟(shū))(2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來(lái)說(shuō),最后歸結(jié):
、俸瘮(shù)觀點(diǎn);
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).
這里強(qiáng)調(diào)方程思想解決問(wèn)題。方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究。同學(xué)可以試著編幾道題。
三、小結(jié)
1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;
2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;
3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。
四、作業(yè)(略)
五、板書(shū)設(shè)計(jì)
1.的定義
2.對(duì)定義的認(rèn)識(shí)
3.的通項(xiàng)公式
(1)公式
。2)對(duì)公式的認(rèn)識(shí)
探究活動(dòng)
將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。
參考答案:
30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍,比如紙?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了。還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案5
一、教材分析
1.從在教材中的地位與作用來(lái)看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2.從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò)。
3.學(xué)情分析
教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、目標(biāo)分析
知識(shí)與技能目標(biāo):
理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)
上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題。
過(guò)程與方法目標(biāo):
通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價(jià)值觀:
通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之
間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。
三、過(guò)程分析
學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:
1.創(chuàng)設(shè)情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿足你的任何要求。西薩說(shuō):請(qǐng)給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚。為什么呢?
設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)。
此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫(xiě)出麥?倲(shù)。帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和。這時(shí)我對(duì)他們的這種思路給予肯定。
設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆。
2.師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我接著問(wèn):1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢?
探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的.2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3.類比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為
1q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)
再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計(jì)意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫(huà)龍點(diǎn)睛之妙用。
4.討論交流,延伸拓展
【高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案】相關(guān)文章:
數(shù)學(xué)小數(shù)的性質(zhì)教案03-04
數(shù)學(xué)教案-指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用08-17
膠體的性質(zhì)及其應(yīng)用08-17
數(shù)學(xué)教案-減法的性質(zhì)08-16
數(shù)學(xué)教案-小數(shù)的性質(zhì)08-16
數(shù)學(xué)教案-合比性質(zhì)和等比性質(zhì)例08-17
數(shù)學(xué)教案-等式和它的性質(zhì)08-16