亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)上冊(cè)數(shù)學(xué)教案

            八年級(jí)上冊(cè)數(shù)學(xué)教案

            時(shí)間:2024-05-25 07:48:17 八年級(jí)數(shù)學(xué)教案 我要投稿

            (經(jīng)典)八年級(jí)上冊(cè)數(shù)學(xué)教案15篇

              作為一名教學(xué)工作者,可能需要進(jìn)行教案編寫(xiě)工作,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。教案要怎么寫(xiě)呢?以下是小編精心整理的八年級(jí)上冊(cè)數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

            (經(jīng)典)八年級(jí)上冊(cè)數(shù)學(xué)教案15篇

            八年級(jí)上冊(cè)數(shù)學(xué)教案1

              《正方形》教學(xué)設(shè)計(jì)

              教學(xué)內(nèi)容分析:

              ⑴學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

             、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類(lèi)比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。

             、菍(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類(lèi)研究的思想,并且建立新舊知識(shí)的聯(lián)系,類(lèi)比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。

              學(xué)生分析

             、艑W(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀(guān)察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。

             、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。

              教學(xué)目標(biāo):

             、胖R(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說(shuō)理。

             、七^(guò)程與方法:通過(guò)類(lèi)比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過(guò)運(yùn)用提高學(xué)生的推理能力。

             、乔楦袘B(tài)度與價(jià)值觀(guān):在學(xué)習(xí)中體會(huì)正方形的完美性,通過(guò)活動(dòng)獲得成功的喜悅與自信。

              重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。

              難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能

              教學(xué)方法:類(lèi)比與探究

              教具準(zhǔn)備:可以活動(dòng)的四邊形模型。

              一、教學(xué)分析

              (一)教學(xué)內(nèi)容分析

              1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》九年級(jí)上冊(cè)(人民教育出版社)

              2.本課教學(xué)內(nèi)容的地位、作用,知識(shí)的前后聯(lián)系

              《中心對(duì)稱(chēng)圖形》是新人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對(duì)稱(chēng)和軸對(duì)稱(chēng)圖形”、“旋轉(zhuǎn)和中心對(duì)稱(chēng)”后的一種對(duì)稱(chēng)圖形,因此涉及歸納、類(lèi)比等思想方法,對(duì)激發(fā)學(xué)生探索精神和創(chuàng)新意識(shí)等方面都有重要意義。

              3.本課教學(xué)內(nèi)容的特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn)

              本節(jié)課主要介紹中心對(duì)稱(chēng)圖形的概念、中心對(duì)稱(chēng)圖形的識(shí)別、中心對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)的比較、中心對(duì)稱(chēng)圖形的性質(zhì)。為使學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展過(guò)程,培養(yǎng)學(xué)生的抽象思維,我將通過(guò):(1)例舉日常生活中的一些旋轉(zhuǎn)對(duì)稱(chēng)圖形引出中心對(duì)稱(chēng)圖形的概念;(2)引導(dǎo)學(xué)生觀(guān)察、猜想、實(shí)驗(yàn)、歸納、類(lèi)比等方法探究中心對(duì)稱(chēng)圖形的性質(zhì),(3)通過(guò)多媒體演示使學(xué)生對(duì)中心對(duì)稱(chēng)圖形的性質(zhì)有直觀(guān)的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動(dòng)過(guò)程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識(shí)的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。

              (二)教學(xué)對(duì)象分析

              1.學(xué)生所在地區(qū)、學(xué)校及班級(jí)的特色

              我授課的班級(jí)是西安市閻良區(qū)振興中學(xué)九年級(jí)一班,作為九年級(jí)的學(xué)生,在圖形的對(duì)稱(chēng)方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀(guān)察、猜想、實(shí)驗(yàn)、歸納、類(lèi)比等研究圖形對(duì)稱(chēng)變換的能力;班級(jí)學(xué)生具有個(gè)性活潑,思維活躍,對(duì)各種事物充滿(mǎn)好奇,學(xué)習(xí)情緒易于調(diào)動(dòng),學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個(gè)體差異較大,并且班級(jí)中已出現(xiàn)分化現(xiàn)象。

              2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn)

              班級(jí)學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問(wèn)題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個(gè)人見(jiàn)解并且具有一定的合作交流、共同探討的意識(shí)與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問(wèn)題,加強(qiáng)學(xué)生在學(xué)習(xí)過(guò)程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過(guò)程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂(lè)趣。

              教學(xué)過(guò)程

              一:復(fù)習(xí)鞏固,建立聯(lián)系

              【教師活動(dòng)

              問(wèn)題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

             、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

              【學(xué)生活動(dòng)

              學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說(shuō)出更多的答案。

              【教師活動(dòng)

              評(píng)析學(xué)生的結(jié)果,給予表?yè)P(yáng)。

              總結(jié)性質(zhì)從邊角對(duì)角線(xiàn)考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。

              演示平行四邊形變?yōu)榫匦瘟庑蔚倪^(guò)程。

              二:動(dòng)手操作,探索發(fā)現(xiàn)。

              活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所示,沿著B(niǎo)′E剪下,能得到什么圖形?

              【學(xué)生活動(dòng)

              學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。

              設(shè)置問(wèn)題:①什么是正方形?

              觀(guān)察發(fā)現(xiàn),從活動(dòng)中體會(huì)。

              【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^(guò)程,菱形變?yōu)檎叫蔚倪^(guò)程。

              【學(xué)生活動(dòng)】認(rèn)真觀(guān)察變化過(guò)程,思考之間的聯(lián)系,舉手回答設(shè)置問(wèn)題。

              設(shè)置問(wèn)題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

              【學(xué)生活動(dòng)】

              小組討論,分組回答。

              【教師活動(dòng)】

              總結(jié)板書(shū):㈠(一組鄰邊相等)的`矩形是正方形,(一個(gè)角是直角)的菱形是正方形。

              設(shè)置問(wèn)題③正方形有那些性質(zhì)?

              【學(xué)生活動(dòng)】

              小組討論,舉手搶答。

              【教師活動(dòng)

              表?yè)P(yáng)學(xué)生發(fā)言,板書(shū)學(xué)生發(fā)現(xiàn),㈡正方形每一條對(duì)角線(xiàn)平分一組對(duì)角

              活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱(chēng)圖形嗎?有幾條對(duì)稱(chēng)軸?

              學(xué)生活動(dòng)

              折紙發(fā)現(xiàn),說(shuō)出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱(chēng)圖形。

              教師活動(dòng)

              演示從平行四邊形變?yōu)檎叫蔚倪^(guò)程,擦去板書(shū)㈠中的括號(hào)內(nèi)容,出示一下問(wèn)題:你還可以怎樣填空?

              ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

              學(xué)生活動(dòng)

              小組充分交流,表達(dá)不同的意見(jiàn)。

              教師活動(dòng)

              評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):

              一組鄰邊相等的矩形是正方形,對(duì)角線(xiàn)互相平分的矩形是正方形;

              有一個(gè)角是直角的菱形是正方形,對(duì)角線(xiàn)相等的菱形是正方形,;

              有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線(xiàn)相等且互相平分的平行四邊形是正方形;

              四邊相等且有一角是直角的四邊形是正方形,對(duì)角線(xiàn)相等且互相垂直平分的四邊形是正方形。

              以上是正方形的判定方法。

              正方形是一個(gè)多么完美的平行四邊形呀?大家互相說(shuō)一說(shuō),它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

              學(xué)生交流,感受正方形

              三,應(yīng)用體驗(yàn),推理證明。

              出示例一:正方形ABCD的兩條對(duì)角線(xiàn)AC,BD交與O,AB長(zhǎng)4cm,求AC,AO長(zhǎng),及的度數(shù)。

              方法一解:∵四邊形ABCD是正方形

              ∴∠ABC=90°(正方形的四個(gè)角是直角)

              BC=AB=4cm(正方形的四條邊相等)

              ∴=45°(等腰直角三角形的底角是45°)

              ∴利用勾股定理可知,AC===4cm

              ∵AO=AC(正方形的對(duì)角線(xiàn)互相平分)

              ∴AO=×4=2cm

              方法二:證明△AOB是等腰直角三角形,即可得證。

              學(xué)生活動(dòng)

              獨(dú)立思考,寫(xiě)出推理過(guò)程,再進(jìn)行小組討論,并且各小組指派代表寫(xiě)在黑板上,共同交流。

              教師活動(dòng)

              總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表?yè)P(yáng)突出學(xué)生。

              出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

              學(xué)生活動(dòng)

              小組交流,分析題意,整理思路,指名口答。

              教師活動(dòng)

              說(shuō)明思路,從已知出發(fā)或者從已有的判定加以選擇。

              四,歸納新知,梳理知識(shí)。

              這一節(jié)課你有什么收獲?

              學(xué)生舉手談?wù)撟约旱氖斋@。

              請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫(xiě)在下圖的ABCDC處,說(shuō)明它們的關(guān)系。

              發(fā)表評(píng)論

              教學(xué)目標(biāo):

              情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂(lè)趣。

              能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問(wèn)題、自主學(xué)習(xí)的能力。

              認(rèn)知目標(biāo):了解梯形的概念及其分類(lèi);掌握等腰梯形的性質(zhì)。

              教學(xué)重點(diǎn)、難點(diǎn)

              重點(diǎn):等腰梯形性質(zhì)的探索;

              難點(diǎn):梯形中輔助線(xiàn)的添加。

              教學(xué)課件:PowerPoint演示文稿

              教學(xué)方法:?jiǎn)l(fā)法、

              學(xué)習(xí)方法:討論法、合作法、練習(xí)法

              教學(xué)過(guò)程:

             。ㄒ唬⿲(dǎo)入

              1、出示圖片,說(shuō)出每輛汽車(chē)車(chē)窗形狀(投影)

              2、板書(shū)課題:5梯形

              3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

              結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。

              5、指出圖形中各部位的名稱(chēng):上底、下底、腰、高、對(duì)角線(xiàn)。(投影)

              6、特殊梯形的分類(lèi):(投影)

             。ǘ┑妊菪涡再|(zhì)的探究

              【探究性質(zhì)一】

              思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

              猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

              如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

              想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

              等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。

              【操練】

             。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

             。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)

              【探究性質(zhì)二】

              如果連接等腰梯形的兩條對(duì)角線(xiàn),圖中有哪幾對(duì)全等三角形?哪些線(xiàn)段相等?(學(xué)生操作、討論、作答)

              如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

              等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線(xiàn)相等。

              【探究性質(zhì)三】

              問(wèn)題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸呢?(學(xué)生操作、作答)

              問(wèn)題二:等腰梯是否軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸是什么?(重點(diǎn)討論)

              等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線(xiàn)相等

              (三)質(zhì)疑反思、小結(jié)

              讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問(wèn)題;

              學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線(xiàn)、對(duì)稱(chēng)性等角度總結(jié))、解題方法(化梯形問(wèn)題為三角形及平行四邊形問(wèn)題)、梯形中輔助線(xiàn)的添加方法。

            八年級(jí)上冊(cè)數(shù)學(xué)教案2

              第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理

              1、探究活動(dòng)一

              內(nèi)容:投影顯示如下地板磚示意圖,引導(dǎo)學(xué)生從面積角度觀(guān)察圖形:

              問(wèn):你能發(fā)現(xiàn)各圖中三個(gè)正方形的面積之間有何關(guān)系嗎?

              學(xué)生通過(guò)觀(guān)察,歸納發(fā)現(xiàn):

              結(jié)論1以等腰直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積。

              意圖:從觀(guān)察實(shí)際生活中常見(jiàn)的地板磚入手,讓學(xué)生感受到數(shù)學(xué)就在我們身邊。通過(guò)對(duì)特殊情形的探究得到結(jié)論1,為探究活動(dòng)二作鋪墊。

              效果:1.探究活動(dòng)一讓學(xué)生獨(dú)立觀(guān)察,自主探究,培養(yǎng)獨(dú)立思考的習(xí)慣和能力;

              2.通過(guò)探索發(fā)現(xiàn),讓學(xué)生得到成功體驗(yàn),激發(fā)進(jìn)一步探究的熱情和愿望。

              2、探究活動(dòng)二

              內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?

             。1)觀(guān)察下面兩幅圖:

             。2)填表:

              A的面積

             。▎挝幻娣e)B的面積

              (單位面積)C的面積

             。▎挝幻娣e)

              左圖

              右圖

             。3)你是怎樣得到正方形C的面積的?與同伴交流(學(xué)生可能會(huì)做出多種方法,教師應(yīng)給予充分肯定)。

              學(xué)生的方法可能有:

              方法一:

              如圖1,將正方形C分割為四個(gè)全等的直角三角形和一個(gè)小正方形。

              方法二:

              如圖2,在正方形C外補(bǔ)四個(gè)全等的直角三角形,形成大正方形,用大正方形的面積減去四個(gè)直角三角形的面積。

              方法三:

              如圖3,正方形C中除去中間5個(gè)小正方形外,將周?chē)糠诌m當(dāng)拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個(gè)小正方形,按此拼法。

             。4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?

              學(xué)生通過(guò)分析數(shù)據(jù),歸納出:

              結(jié)論2以直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的`正方形的面積。

              意圖:探究活動(dòng)二意在讓學(xué)生通過(guò)觀(guān)察、計(jì)算、探討、歸納進(jìn)一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計(jì)算是一個(gè)難點(diǎn),為此設(shè)計(jì)了一個(gè)交流環(huán)節(jié)。

              效果:學(xué)生通過(guò)充分討論探究,在突破正方形C的面積計(jì)算這一難點(diǎn)后得出結(jié)論2.

              3、議一議

              內(nèi)容:(1)你能用直角三角形的邊長(zhǎng),來(lái)表示上圖中正方形的面積嗎?

             。2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?

              (3)分別以5厘米、12厘米為直角邊作出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度。2中發(fā)現(xiàn)的規(guī)律對(duì)這個(gè)三角形仍然成立嗎?

              勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。

              數(shù)學(xué)小史:勾股定理是我國(guó)最早發(fā)現(xiàn)的,中國(guó)古代把直角三角形中較短的直角邊稱(chēng)為勾,較長(zhǎng)的直角邊稱(chēng)為股,斜邊稱(chēng)為弦,“勾股定理”因此而得名(在西方文獻(xiàn)中又稱(chēng)為畢達(dá)哥拉斯定理)。

              意圖:議一議意在讓學(xué)生在結(jié)論2的基礎(chǔ)上,進(jìn)一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。

              效果:1.讓學(xué)生歸納表述結(jié)論,可培養(yǎng)學(xué)生的抽象概括能力及語(yǔ)言表達(dá)能力;

              2.通過(guò)作圖培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力。

            八年級(jí)上冊(cè)數(shù)學(xué)教案3

              一、教材分析教材的地位和作用:

              本節(jié)內(nèi)容是第一課時(shí)《軸對(duì)稱(chēng)》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動(dòng)經(jīng)歷,從觀(guān)察生活中的軸對(duì)稱(chēng)現(xiàn)象開(kāi)始,從整體的角度認(rèn)識(shí)軸對(duì)稱(chēng)的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),使學(xué)生從對(duì)圖形的感性認(rèn)識(shí)上升到對(duì)軸對(duì)稱(chēng)的理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)軸對(duì)稱(chēng)性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識(shí)奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

              二、學(xué)情分析

              八年級(jí)學(xué)生有一定的知識(shí)水平,已經(jīng)初步形成了一定觀(guān)察能力、語(yǔ)言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過(guò)觀(guān)察生活中的實(shí)例和動(dòng)手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。

              三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定

              根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:

              (一)教學(xué)目標(biāo):

              1、知識(shí)技能

              (1)理解并掌握軸對(duì)稱(chēng)圖形的概念,對(duì)稱(chēng)軸;能準(zhǔn)確判斷哪些事物是軸對(duì)稱(chēng)圖形;找出軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸.

              (2)理解并掌握軸對(duì)稱(chēng)的概念,對(duì)稱(chēng)軸;了解對(duì)稱(chēng)點(diǎn).

              (3)了解軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的聯(lián)系與區(qū)別.

              2、過(guò)程與方法目標(biāo)

              經(jīng)歷“觀(guān)察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過(guò)程,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力、抽象思維和語(yǔ)言表達(dá)能力.

              3、情感、態(tài)度與價(jià)值觀(guān)

              通過(guò)對(duì)生活中數(shù)學(xué)問(wèn)題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過(guò)程中,體會(huì)數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛(ài)生活的情感和欣賞圖形的對(duì)稱(chēng)美。

              (二)教學(xué)重點(diǎn):軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的有關(guān)概念.

              (三)教學(xué)難點(diǎn):軸對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)的聯(lián)系、區(qū)別

              .四、教法和學(xué)法設(shè)計(jì)

              本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征。我選擇的:

              【教法策略】采用以直觀(guān)演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過(guò)豐富的圖片展示,創(chuàng)設(shè)出問(wèn)題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動(dòng),激發(fā)學(xué)生探求知識(shí)的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),使不同層次學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

              【學(xué)法策略】:讓學(xué)生在“觀(guān)察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過(guò)程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過(guò)程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

              【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問(wèn)題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀(guān)效果,提高課堂效率

              五、說(shuō)程序設(shè)計(jì):

              新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀(guān)察、試驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了設(shè)計(jì)。

              (一)、觀(guān)圖激趣、設(shè)疑導(dǎo)入。

              出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來(lái)到花叢中游玩,這時(shí)蝴蝶對(duì)蜜蜂說(shuō):“咱們長(zhǎng)得真象”,蜜蜂百思不得其解。你能說(shuō)出為什么長(zhǎng)得象嗎?今天我們就來(lái)共同探討這一問(wèn)題――軸對(duì)稱(chēng)。

              [設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂(lè)見(jiàn)的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,

              (二)、實(shí)踐探索、感悟特征.

              《活動(dòng)一(課件演示)觀(guān)察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見(jiàn)的具有代表性的典型的軸對(duì)稱(chēng)圖形,出示后先讓學(xué)生自己觀(guān)察,并引導(dǎo)學(xué)生感知,無(wú)論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問(wèn)題:這些圖形有什么共同特征?是如何對(duì)稱(chēng)?怎樣才能使對(duì)稱(chēng)?部分重合呢?讓學(xué)生觀(guān)察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線(xiàn)翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對(duì)稱(chēng)圖形和對(duì)稱(chēng)軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對(duì)軸對(duì)稱(chēng)圖形概念的理解。

              為了進(jìn)一步認(rèn)識(shí)軸對(duì)稱(chēng)圖形的特點(diǎn)又出示了一組練習(xí)

              (練習(xí)1)這是一組常見(jiàn)幾何圖形,要求學(xué)生判斷是否是對(duì)稱(chēng)圖形,若是對(duì)稱(chēng)圖形的,畫(huà)出它的對(duì)稱(chēng)軸

              [設(shè)計(jì)意圖]通過(guò)這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對(duì)稱(chēng)圖形的概念,而且讓學(xué)生認(rèn)識(shí)到我們常見(jiàn)的圖形,有些是軸對(duì)稱(chēng)圖形,有些不是軸對(duì)稱(chēng)圖形。并且還讓學(xué)生認(rèn)識(shí)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸不僅僅只一條,有可能有2條、3條、4條甚至無(wú)數(shù)條,對(duì)稱(chēng)軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

              (練習(xí)2)國(guó)家的一個(gè)象征,觀(guān)察下面的國(guó)旗,哪些是軸對(duì)稱(chēng)圖形?試找出它們的對(duì)稱(chēng)軸。次題進(jìn)一步鞏固了軸對(duì)稱(chēng)圖形的概念,培養(yǎng)了學(xué)生的`觀(guān)察能力、想象能力,同時(shí)通過(guò)展示各國(guó)的國(guó)旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識(shí)面。

              (三)、動(dòng)手操作、再度探索新知。

              將一張紙對(duì)折,用筆尖扎出一個(gè)圖案,然后將紙展開(kāi)后,鋪平,觀(guān)察各自得到的圖案與軸對(duì)稱(chēng)圖形的不同。教學(xué)中注重學(xué)生活動(dòng),鼓勵(lì)學(xué)生親自實(shí)踐,積極思考,在樂(lè)學(xué)的氛圍中,培養(yǎng)學(xué)生的動(dòng)手能力,從而引出軸對(duì)稱(chēng)概念。

              再次引導(dǎo)學(xué)生討論、歸納得出軸對(duì)稱(chēng)的概念……。之后再結(jié)合動(dòng)畫(huà)演示加深對(duì)軸對(duì)稱(chēng)概念的理解,進(jìn)而引出對(duì)稱(chēng)軸、對(duì)稱(chēng)點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識(shí)。

              (四)、鞏固練習(xí)、升華新知。

              出示幾幅圖形,請(qǐng)同學(xué)們辨別哪幅圖形是軸對(duì)稱(chēng)圖形哪些圖形軸對(duì)稱(chēng),

              在這組練習(xí)中讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,充分調(diào)動(dòng)了學(xué)生的各種感官參與學(xué)習(xí),既加深了對(duì)兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對(duì)稱(chēng)圖形及軸對(duì)稱(chēng)區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

              (課件演示)軸對(duì)稱(chēng)圖形及兩個(gè)圖形成軸對(duì)稱(chēng)區(qū)別與聯(lián)系

              (五)、綜合練習(xí)、發(fā)展思維。

              1、搶答;觀(guān)察周?chē)男┦挛锏男螤钍禽S對(duì)稱(chēng)圖形。

              2、判斷:

              生活中不僅有些物體的形狀是軸對(duì)稱(chēng)圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對(duì)稱(chēng)圖形。

              (1)下面的數(shù)字或字母,哪些是軸對(duì)稱(chēng)圖形?它們各有幾條對(duì)稱(chēng)軸?

              0123456789ABCDEFGH

              3、像這樣寫(xiě)法的漢字哪些是軸對(duì)稱(chēng)圖形?

              口工用中由日直水清甲

              (這幾道題的練習(xí)做到了知識(shí)性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

              (六)歸納小結(jié)、布置作業(yè)

              [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語(yǔ)言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

              六、設(shè)計(jì)說(shuō)明

              這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過(guò)六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過(guò)觀(guān)察生活中的一些圖案以及動(dòng)畫(huà)演示,由感性到理性,讓學(xué)生輕松掌握了軸對(duì)稱(chēng)圖形與關(guān)于直線(xiàn)成軸對(duì)稱(chēng)兩個(gè)概念,指導(dǎo)學(xué)生操作、觀(guān)察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過(guò)程中讓學(xué)生動(dòng)口、動(dòng)手、動(dòng)眼、動(dòng)腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對(duì)本節(jié)課的理解和說(shuō)明。

            八年級(jí)上冊(cè)數(shù)學(xué)教案4

              一、內(nèi)容和內(nèi)容解析

              1.內(nèi)容

              三角形中相關(guān)元素的概念、按邊分類(lèi)及三角形的三邊關(guān)系.

              2.內(nèi)容解析

              三角形是一種最基本的幾何圖形,是認(rèn)識(shí)其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進(jìn)一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類(lèi)和三角形三邊關(guān)系,使學(xué)生對(duì)三角形的有關(guān)知識(shí)有更為深刻的理解.

              本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系.

              本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系.

              二、目標(biāo)和目標(biāo)解析

              1.教學(xué)目標(biāo)

              (1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號(hào)語(yǔ)言表示三角形中的對(duì)應(yīng)元素.

              (2)理解并且靈活應(yīng)用三角形三邊關(guān)系.

              2.教學(xué)目標(biāo)解析

              (1)結(jié)合具體圖形,識(shí)三角形的概念及其基本元素.

              (2)會(huì)用符號(hào)、字母表示三角形中的相關(guān)元素,并會(huì)按邊對(duì)三角形進(jìn)行分類(lèi).

              (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來(lái)解決問(wèn)題.

              三、教學(xué)問(wèn)題診斷分析

              在探索三角形三邊關(guān)系的過(guò)程中,讓學(xué)生經(jīng)歷觀(guān)察、探究、推理、交流等活動(dòng)過(guò)程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.

              四、教學(xué)過(guò)程設(shè)計(jì)

              1.創(chuàng)設(shè)情境,提出問(wèn)題

              問(wèn)題回憶生活中的三角形實(shí)例,結(jié)合你以前對(duì)三角形的了解,請(qǐng)你給三角形下一個(gè)定義.

              師生活動(dòng):先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對(duì)學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對(duì)三角形概念的理解.

              【設(shè)計(jì)意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的`過(guò)程,借此培養(yǎng)學(xué)生的語(yǔ)言表述能力,加深學(xué)生對(duì)三角形概念的理解.

              2.抽象概括,形成概念

              動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫(huà),歸納出三角形的定義.

              師生活動(dòng):

              三角形的定義:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形.

              【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由抽象到具體的過(guò)程,培養(yǎng)學(xué)生的語(yǔ)言表述能力.

              補(bǔ)充說(shuō)明:要求學(xué)生學(xué)會(huì)三角形、三角形的頂點(diǎn)、邊、角的概念以及幾何表達(dá)方法.

              師生活動(dòng):結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會(huì)由文字語(yǔ)言向幾何語(yǔ)言的過(guò)渡.

              【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)三角形中相關(guān)元素的認(rèn)知,并進(jìn)一步熟悉幾何語(yǔ)言在學(xué)習(xí)中的應(yīng)用.

              3.概念辨析,應(yīng)用鞏固

              如圖,不重復(fù),且不遺漏地識(shí)別所有三角形,并用符號(hào)語(yǔ)言表示出來(lái).

              1.以AB為一邊的三角形有哪些?

              2.以∠D為一個(gè)內(nèi)角的三角形有哪些?

              3.以E為一個(gè)頂點(diǎn)的三角形有哪些?

              4.說(shuō)出ΔBCD的三個(gè)角.

              師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,加深學(xué)生對(duì)三角形中相關(guān)元素概念的理解.

              4.拓廣延伸,探究分類(lèi)

              我們知道,按照三個(gè)內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對(duì)三角形進(jìn)行分類(lèi),又應(yīng)該如何分呢?小組之間同學(xué)進(jìn)行交流并說(shuō)說(shuō)你們的想法.

              師生活動(dòng):通過(guò)討論,學(xué)生類(lèi)比按角的分類(lèi)方法按邊對(duì)三角形進(jìn)行分類(lèi),接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強(qiáng)化學(xué)生對(duì)三角形按邊分類(lèi)的理解.

            八年級(jí)上冊(cè)數(shù)學(xué)教案5

              一、內(nèi)容和內(nèi)容解析

              1.內(nèi)容

              三角形高線(xiàn)、中線(xiàn)及角平分線(xiàn)的概念、幾何語(yǔ)言表達(dá)及它們的畫(huà)法.

              2.內(nèi)容解析

              本節(jié)內(nèi)容概念較多,有三角形的高、中線(xiàn)、角平分線(xiàn)和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線(xiàn)、角平分線(xiàn)的畫(huà)法,培養(yǎng)學(xué)生動(dòng)手操作及解決問(wèn)題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛(ài)生活、勇于探索的思想感情。

              理解三角形高、角平分線(xiàn)及中線(xiàn)概念到用幾何語(yǔ)言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問(wèn)題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備.

              本節(jié)的重點(diǎn)是了解三角形的高、中線(xiàn)及角平分線(xiàn)概念的同時(shí)還要掌握它們的畫(huà)法,難點(diǎn)是鈍角三角形的高的畫(huà)法及不同類(lèi)型的三角形高線(xiàn)的位置關(guān)系.

              二、目標(biāo)和目標(biāo)解析

              1.教學(xué)目標(biāo)

              (1)理解三角形的高、中線(xiàn)與角平分線(xiàn)等概念;

              (2)會(huì)用工具畫(huà)三角形的高、中線(xiàn)與角平分線(xiàn);

              2.教學(xué)目標(biāo)解析

              (1)經(jīng)歷畫(huà)圖實(shí)踐過(guò)程,理解三角形的高、中線(xiàn)與角平分線(xiàn)等概念.

              (2)能夠熟練用幾何語(yǔ)言表達(dá)三角形的高、中線(xiàn)與角平分線(xiàn)的性質(zhì).

              (3)掌握三角形的高、中線(xiàn)與角平分線(xiàn)的畫(huà)法.

              (4)了解三角形的三條高、三條中線(xiàn)與三條角平分線(xiàn)分別相交于一點(diǎn).

              三、教學(xué)問(wèn)題診斷分析

              三角形的高線(xiàn)的理解:三角形的高是線(xiàn)段,不是直線(xiàn),它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的.對(duì)邊或?qū)吽诘闹本(xiàn)上.

              三角形的中線(xiàn)的理解:三角形的中線(xiàn)也是線(xiàn)段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線(xiàn),它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn).

              三角形的角平分線(xiàn)的理解:三角形的角平分線(xiàn)也是一條線(xiàn)段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上.而角的平分線(xiàn)是一條射線(xiàn),即就是說(shuō)三角形的角平分線(xiàn)與通常的角平線(xiàn)有一定的聯(lián)系又有本質(zhì)的區(qū)別.

            八年級(jí)上冊(cè)數(shù)學(xué)教案6

              學(xué)習(xí)目標(biāo)

              1、通過(guò)運(yùn)算多項(xiàng)式乘法,來(lái)推導(dǎo)平方差公式,學(xué)生的認(rèn)識(shí)由一般法則到特殊法則的能力。

              2、通過(guò)親自動(dòng)手、觀(guān)察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。

              3、初步學(xué)會(huì)運(yùn)用平方差公式進(jìn)行計(jì)算。

              學(xué)習(xí)重難點(diǎn)重點(diǎn):

              平方差公式的推導(dǎo)及應(yīng)用。

              難點(diǎn)是對(duì)公式中a,b的廣泛含義的理解及正確運(yùn)用。

              自學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)

              看一看

              認(rèn)真閱讀教材,記住以下知識(shí):

              文字?jǐn)⑹銎椒讲罟剑篲________________

              用字母表示:________________

              做一做:

              1、完成下列練習(xí):

             、(m+n)(p+q)

              ②(a+b)(x-y)

             、(2x+3y)(a-b)

              ④(a+2)(a-2)

              ⑤(3-x)(3+x)

             、(2m+n)(2m-n)

              想一想

              你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

              _______________________________

              _______________________________

              ________________________________、

              1、下列計(jì)算對(duì)不對(duì)?若不對(duì),請(qǐng)?jiān)跈M線(xiàn)上寫(xiě)出正確結(jié)果、

              (1)(x-3)(x+3)=x2-3( ),__________;

              (2)(2x-3)(2x+3)=2x2-9( ),_________;

              (3)(-x-3)(x-3)=x2-9( ),_________;

              (4)(2xy-1)(2xy+1)=2xy2-1( ),________、

              2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

              (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、

              3、計(jì)算:50×49=_________、

              應(yīng)用探究

              1、幾何解釋平方差公式

              展示:邊長(zhǎng)a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形。

              (1)請(qǐng)計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。

              (2)小明將陰影部分拼成一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形長(zhǎng)與寬是多少?你能表示出它的.面積嗎?

              2、用平方差公式計(jì)算

              (1)103×93 (2)59、8×60、2

              拓展提高

              1、閱讀題:

              我們?cè)谟?jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算、解答過(guò)程如下:

              原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

              =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

              =(24-1)(24+1)(28+1)(216+1)(232+1)

              =……=264-1

              你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請(qǐng)?jiān)囋嚳?

              2、仔細(xì)觀(guān)察,探索規(guī)律:

              (x-1)(x+1)=x2-1

              (x-1)(x2+x+1)=x3-1

              (x-1)(x3+x2+x+1)=x4-1

              (x-1)(x4+x3+x2+x+1)=x5-1

              ……

              (1)試求25+24+23+22+2+1的值;

              (2)寫(xiě)出22006+22005+22004+…+2+1的個(gè)位數(shù)、

              堂堂清

              一、選擇題

              1、下列各式中,能用平方差公式計(jì)算的是( )

              (1)(a-2b)(-a+2b);

              (2)(a-2b)(-a-2b);

              (3)(a-2b)(a+2b);

              (4)(a-2b)(2a+b)、

            八年級(jí)上冊(cè)數(shù)學(xué)教案7

              【教學(xué)目標(biāo)】

              知識(shí)與技能

              能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

              過(guò)程與方法

              使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

              情感、態(tài)度與價(jià)值觀(guān)

              培養(yǎng)學(xué)生分析、類(lèi)比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

              【教學(xué)重難點(diǎn)】

              重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

              難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

              關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

              【教學(xué)過(guò)程】

              一、回顧交流,導(dǎo)入新知

              【復(fù)習(xí)交流】

              下列從左到右的變形是否是因式分解,為什么?

              (1)2x2+4=2(x2+2);

              (2)2t2-3t+1=(2t3-3t2+t);

              (3)x2+4xy-y2=x(x+4y)-y2;

              (4)m(x+y)=mx+my;

              (5)x2-2xy+y2=(x-y)2.

              問(wèn)題:

              1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

              2.多項(xiàng)式4x2-x和xy2-yz-y呢?

              請(qǐng)將上述多項(xiàng)式分別寫(xiě)成兩個(gè)因式的乘積的形式,并說(shuō)明理由.

              【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

              概念:如果一個(gè)多項(xiàng)式的'各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

              二、小組合作,探究方法

              教師提問(wèn):多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

              【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

              三、范例學(xué)習(xí),應(yīng)用所學(xué)

              例1:把-4x2yz-12xy2z+4xyz分解因式.

              解:-4x2yz-12xy2z+4xyz

              =-(4x2yz+12xy2z-4xyz)

              =-4xyz(x+3y-1)

              例2:分解因式:3a2(x-y)3-4b2(y-x)2

              【分析】觀(guān)察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

              解法1:3a2(x-y)3-4b2(y-x)2

              =-3a2(y-x)3-4b2(y-x)2

              =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

              =-(y-x)2[3a2(y-x)+4b2]

              =-(y-x)2(3a2y-3a2x+4b2)

              解法2:3a2(x-y)3-4b2(y-x)2

              =(x-y)2·3a2(x-y)-4b2(x-y)2

              =(x-y)2[3a2(x-y)-4b2]

              =(x-y)2(3a2x-3a2y-4b2)

              例3:用簡(jiǎn)便的方法計(jì)算:

              0.84×12+12×0.6-0.44×12.

              【教師活動(dòng)】引導(dǎo)學(xué)生觀(guān)察并分析怎樣計(jì)算更為簡(jiǎn)便.

              解:0.84×12+12×0.6-0.44×12

              =12×(0.84+0.6-0.44)

              =12×1=12.

              【教師活動(dòng)】在學(xué)生完成例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

              四、隨堂練習(xí),鞏固深化

              課本115頁(yè)練習(xí)第1、2、3題.

              【探研時(shí)空】

              利用提公因式法計(jì)算:

              0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

              五、課堂總結(jié),發(fā)展?jié)撃?/p>

              1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

              2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.

              六、布置作業(yè),專(zhuān)題突破

              課本119頁(yè)習(xí)題14.3第1、4(1)、6題.

            八年級(jí)上冊(cè)數(shù)學(xué)教案8

              教學(xué)目標(biāo):

              1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

              2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說(shuō)理和簡(jiǎn)單的推理的意識(shí)及能力。

              重點(diǎn)難點(diǎn):

              重點(diǎn):了解勾股定理的由來(lái),并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。

              難點(diǎn):勾股定理的發(fā)現(xiàn)

              教學(xué)過(guò)程

              一、創(chuàng)設(shè)問(wèn)題的情境,激發(fā)學(xué)生的'學(xué)習(xí)熱情,導(dǎo)入課題

              出示投影1(章前的圖文p1)教師道白:介紹我國(guó)古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國(guó)是最早了解勾股定理的國(guó)家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

              出示投影2(書(shū)中的P2圖1—2)并回答:

              1、觀(guān)察圖

              1—2,正方形A中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。

              正方形B中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。

              正方形C中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。

              2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問(wèn):

              3、圖

              1—2中,A,B,C之間的面積之間有什么關(guān)系?

              學(xué)生交流后形成共識(shí),教師板書(shū),A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?

              二、做一做

              出示投影3(書(shū)中P3圖1—4)提問(wèn):

              1、圖

              1—3中,A,B,C之間有什么關(guān)系?

              2、圖

              1—4中,A,B,C之間有什么關(guān)系?

              3、從圖

              1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

              學(xué)生討論、交流形成共識(shí)后,教師總結(jié):

              以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

              三、議一議

              1、圖

              1—1、1—2、1—3、1—4中,你能用三角形的邊長(zhǎng)表示正方形的面積嗎?

              2、你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間的關(guān)系嗎?

              在同學(xué)的交流基礎(chǔ)上,老師板書(shū):

              直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

              也就是說(shuō):如果直角三角形的兩直角邊為a,b,斜邊為c

              那么

              我國(guó)古代稱(chēng)直角三角形的較短的直角邊為勾,較長(zhǎng)的為股,斜邊為弦,這就是勾股定理的由來(lái)。

              3、分別以

              5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度(學(xué)生測(cè)量后回答斜邊長(zhǎng)為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)

              四、想一想

              這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長(zhǎng)嗎?只的是屏幕的款嗎?那他指什么呢?

              五、鞏固練習(xí)

              1、錯(cuò)例辨析:

              △ABC的兩邊為3和4,求第三邊

              解:由于三角形的兩邊為3、4

              所以它的第三邊的c應(yīng)滿(mǎn)足=25

              即:c=5

              辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題

              △ ABC并未說(shuō)明它是否是直角三角形,所以用勾股定理就沒(méi)有依據(jù)。

             。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿(mǎn)足,題目中并為交待C是斜邊

              綜上所述這個(gè)題目條件不足,第三邊無(wú)法求得。

              2、練習(xí)P

              7 §1.1 1

              六、作業(yè)

              課本P7 §1.1 2、3、4

            八年級(jí)上冊(cè)數(shù)學(xué)教案9

              教學(xué)目標(biāo):

              1、知識(shí)目標(biāo):了解圖案最常見(jiàn)的構(gòu)圖方式:軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。

              2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過(guò)程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問(wèn)題的能力,合作和交流的能力以及創(chuàng)新能力。

              3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀(guān)念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的'生活態(tài)度。

              重點(diǎn)與難點(diǎn):

              重點(diǎn):靈活運(yùn)用軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。

              難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。

              疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖

              教具學(xué)具準(zhǔn)備:

              提前一周布置學(xué)生以小組為單位,通過(guò)各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見(jiàn)的圖案及其形成過(guò)程的動(dòng)畫(huà)演示。

              教學(xué)過(guò)程設(shè)計(jì):

              1、情境導(dǎo)入:在優(yōu)美的音樂(lè)中,逐個(gè)展示生活中常見(jiàn)的典型圖案,并讓學(xué)生試著說(shuō)一說(shuō)每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)

              明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過(guò)觀(guān)察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過(guò)旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說(shuō)說(shuō)每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過(guò)軸對(duì)稱(chēng)變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱(chēng)及對(duì)稱(chēng)軸的條數(shù)),而圖(2)可以通過(guò)平移形成。

              2、課本

              1 欣賞課本75頁(yè)圖3—24的圖案,并分析這個(gè)圖案形成過(guò)程。

              評(píng)注:圖案是密鋪圖案的代表,旨在通過(guò)對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說(shuō)明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

              評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過(guò)變換得到。而且變化方式也可以是:左下角的圖案通過(guò)軸對(duì)稱(chēng)變換得到左上圖和右下圖。

              (二)課內(nèi)練習(xí)

              (1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。

              (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱(chēng)、中心對(duì)稱(chēng)等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說(shuō)明自己的設(shè)計(jì)意圖。

              (三)議一議

              生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。

              (四)課時(shí)小結(jié)

              本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱(chēng)變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。

              通過(guò)今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱(chēng)等多種方法來(lái)設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過(guò)目不忘,達(dá)到標(biāo)志的效果。)

              八年級(jí)數(shù)學(xué)上冊(cè)教案(五)延伸拓展

              進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。

            八年級(jí)上冊(cè)數(shù)學(xué)教案10

              一、教學(xué)目標(biāo)

              1、理解分式的基本性質(zhì)。

              2、會(huì)用分式的基本性質(zhì)將分式變形。

              二、重點(diǎn)、難點(diǎn)

              1、重點(diǎn):理解分式的基本性質(zhì)。

              2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

              3、認(rèn)知難點(diǎn)與突破方法

              教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類(lèi)比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

              三、練習(xí)題的意圖分析

              1.P7的例2是使學(xué)生觀(guān)察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

              2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的`積,作為最簡(jiǎn)公分母。

              教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

              3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào)。這一類(lèi)題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

              “不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

              四、課堂引入

              1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

              2、說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?

              3、提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類(lèi)比猜想出分式的基本性質(zhì)。

              五、例題講解

              P7例2.填空:

              [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。

              P11例3.約分:

              [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。

              P11例4.通分:

              [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

            八年級(jí)上冊(cè)數(shù)學(xué)教案11

              教學(xué)內(nèi)容

              本節(jié)課主要介紹全等三角形的概念和性質(zhì).

              教學(xué)目標(biāo)

              1.知識(shí)與技能

              領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念.

              2.過(guò)程與方法

              經(jīng)歷探索全等三角形性質(zhì)的過(guò)程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角.

              3.情感、態(tài)度與價(jià)值觀(guān)

              培養(yǎng)觀(guān)察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.

              重、難點(diǎn)與關(guān)鍵

              1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素.

              2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.

              3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.教具準(zhǔn)備

              四張大小一樣的紙片、直尺、剪刀.

              教學(xué)方法

              采用“直觀(guān)──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).教學(xué)過(guò)程

              一、動(dòng)手操作,導(dǎo)入課題

              1.先在其中一張紙上畫(huà)出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

              2.重新在一張紙板上畫(huà)出任意一個(gè)三角形,再用剪刀剪下,?思考得到的.圖形有何特點(diǎn)?

              【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.

              【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.

              學(xué)生在操作過(guò)程中,教師要讓學(xué)生事先在紙上畫(huà)出三角形,然后固定重疊的兩張紙,注意整個(gè)過(guò)程要細(xì)心.

              【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“≌”表示.

              概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.

              【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀(guān)察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?

              【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.

              【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.

              【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?

              【交流討論】通過(guò)同桌交流,實(shí)驗(yàn)得出下面結(jié)論:

              1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.

              2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.

              3.完全重合說(shuō)明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.

            八年級(jí)上冊(cè)數(shù)學(xué)教案12

              一.教學(xué)目標(biāo):

              1.了解方差的定義和計(jì)算公式。

              2.理解方差概念的產(chǎn)生和形成的過(guò)程。

              3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。

              二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

              1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問(wèn)題。

              2.難點(diǎn):理解方差公式

              3.難點(diǎn)的突破方法:

              方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。

              (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過(guò)程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。

              (2)波動(dòng)性可以通過(guò)什么方式表現(xiàn)出來(lái)?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法?梢援(huà)折線(xiàn)圖方法來(lái)反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫(huà)折線(xiàn)圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來(lái)描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。

              (3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋?zhuān)▌?dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的'差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過(guò)對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。

              三.例習(xí)題的意圖分析:

              1.教材P125的討論問(wèn)題的意圖:

              (1).創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

              (2).為引入方差概念和方差計(jì)算公式作鋪墊。

              (3).介紹了一種比較直觀(guān)的衡量數(shù)據(jù)波動(dòng)大小的方法——畫(huà)折線(xiàn)法。

              (4).客觀(guān)上反映了在解決某些實(shí)際問(wèn)題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。

              2.教材P154例1的設(shè)計(jì)意圖:

              (1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。

              (2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類(lèi)似的實(shí)際問(wèn)題。

              四.課堂引入:

              除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過(guò)學(xué)生觀(guān)看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問(wèn)題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

              五.例題的分析:

              教材P154例1在分析過(guò)程中應(yīng)抓住以下幾點(diǎn):

              1.題目中“整齊”的含義是什么?說(shuō)明在這個(gè)問(wèn)題中要研究一組數(shù)據(jù)的什么?學(xué)生通過(guò)思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。

              2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問(wèn)題可以使學(xué)生明確利用方差計(jì)算步驟。

              3.方差怎樣去體現(xiàn)波動(dòng)大小?

              這一問(wèn)題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。

              六.隨堂練習(xí):

              1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)

              甲:9、10、11、12、7、13、10、8、12、8;

              乙:8、13、12、11、10、12、7、7、9、11;

              問(wèn):(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?

              (2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?

              2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆l(shuí)的成績(jī)比較穩(wěn)定?為什么?

              測(cè)試次數(shù)1 2 3 4 5

              段巍13 14 13 12 13

              金志強(qiáng)10 13 16 14 12

              參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

              2.段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。

              七.課后練習(xí):

              1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

              2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

              甲:7、8、6、8、6、5、9、10、7、4

              乙:9、5、7、8、7、6、8、6、7、7

              經(jīng)過(guò)計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

              3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )

              甲:0、1、0、2、2、0、3、1、2、4

              乙:2、3、1、2、0、2、1、1、2、1

              分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?

              4.小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)

              小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

              小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

              如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰(shuí)呢?

              答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好

              4. =10.9、S =0.02;

              =10.9、S =0.008

              選擇小兵參加比賽。

            八年級(jí)上冊(cè)數(shù)學(xué)教案13

              第11章平面直角坐標(biāo)系

              11。1平面上點(diǎn)的坐標(biāo)

              第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)

              教學(xué)目標(biāo)

              【知識(shí)與技能】

              1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。

              2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫(xiě)出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。

              3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來(lái)描述點(diǎn)的位置。

              【過(guò)程與方法】

              1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。

              2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來(lái)描述物體的位置。

              【情感、態(tài)度與價(jià)值觀(guān)】

              通過(guò)引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問(wèn)題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。

              重點(diǎn)難點(diǎn)

              【重點(diǎn)】

              認(rèn)識(shí)平面直角坐標(biāo)系,寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。

              【難點(diǎn)】

              理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

              教學(xué)過(guò)程

              一、創(chuàng)設(shè)情境、導(dǎo)入新知

              師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說(shuō)?

              生甲:我在第3排第5個(gè)座位。

              生乙:我在第4行第7列。

              師:很好!我們買(mǎi)的電影票上寫(xiě)著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來(lái)。

              二、合作探究,獲取新知

              師:在以上幾個(gè)問(wèn)題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來(lái)表示這個(gè)物體

              的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來(lái)表示,但是,如果(5,3)表示5排3號(hào)的話(huà),那么(3,5)表示什么呢?

              生:3排5號(hào)。

              師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰(shuí)來(lái)說(shuō)說(shuō)我們應(yīng)該怎樣表示一個(gè)物體的位置呢?

              生:用一個(gè)有序的實(shí)數(shù)對(duì)來(lái)表示。

              師:對(duì)。我們學(xué)過(guò)實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來(lái)呢?

              生:可以。

              教師在黑板上作圖:

              我們可以在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

              正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。

              師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來(lái)表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫(huà)一個(gè)平面直角坐標(biāo)系。

              學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。

              教師邊操作邊講解:

              如圖,由點(diǎn)P分別向x軸和y軸作垂線(xiàn),垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說(shuō)P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫(xiě)在前,縱坐標(biāo)寫(xiě)在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過(guò)這點(diǎn)向y軸作垂線(xiàn),對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過(guò)這點(diǎn)向x軸作垂線(xiàn),對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。

              教師多媒體出示:

              師:如圖,請(qǐng)同學(xué)們寫(xiě)出A、B、C、D這四點(diǎn)的坐標(biāo)。

              生甲:A點(diǎn)的坐標(biāo)是(—5,4)。

              生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。

              生丙:C點(diǎn)的坐標(biāo)是(4,0)。

              生。篋點(diǎn)的坐標(biāo)是(0,—6)。

              師:很好!我們已經(jīng)知道了怎樣寫(xiě)出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?

              教師邊操作邊講解:

              在x軸上找出橫坐標(biāo)是3的點(diǎn),過(guò)這一點(diǎn)向x軸作垂線(xiàn),橫坐標(biāo)是3的點(diǎn)都在這條直線(xiàn)上;在y軸上找出縱坐標(biāo)是—2的`點(diǎn),過(guò)這一點(diǎn)向y軸作垂線(xiàn),縱坐標(biāo)是—2的點(diǎn)都在這條直線(xiàn)上;這兩條直線(xiàn)交于一點(diǎn),這一點(diǎn)既滿(mǎn)足橫坐標(biāo)為3,又滿(mǎn)足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。

              學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。

              三、深入探究,層層推進(jìn)

              師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開(kāi)始,按逆時(shí)針?lè)较,把這四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?

              生:都一樣。

              師:對(duì),由作垂線(xiàn)求坐標(biāo)的過(guò)程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說(shuō)出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎?

              生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。

              師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?

              生:能,在第二象限。

              四、練習(xí)新知

              師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。

              教師寫(xiě)出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

              生甲:A點(diǎn)在第三象限。

              生乙:B點(diǎn)在第四象限。

              生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。

              生。篋點(diǎn)不屬于任何一個(gè)象限,它在x軸上。

              師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。

              學(xué)生作圖,教師巡視,并予以指導(dǎo)。

              五、課堂小結(jié)

              師:本節(jié)課你學(xué)到了哪些新的知識(shí)?

              生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。

              教師補(bǔ)充完善。

              教學(xué)反思

              物體位置的說(shuō)法和表述物體的位置等問(wèn)題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒(méi)有想到這些問(wèn)題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來(lái)表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

              第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)

              教學(xué)目標(biāo)

              【知識(shí)與技能】

              進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。

              【過(guò)程與方法】

              通過(guò)探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

              【情感、態(tài)度與價(jià)值觀(guān)】

              培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過(guò)二維坐標(biāo)來(lái)描述圖形頂點(diǎn),從而描述圖形的方法。

              重點(diǎn)難點(diǎn)

              【重點(diǎn)】

              理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。

              【難點(diǎn)】

              不規(guī)則圖形面積的求法。

              教學(xué)過(guò)程

              一、創(chuàng)設(shè)情境,導(dǎo)入新知

              師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來(lái)。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。

              學(xué)生作圖。

              教師邊操作邊講解:

              二、合作探究,獲取新知

              師:現(xiàn)在我們把這三個(gè)點(diǎn)用線(xiàn)段連接起來(lái),看一下得到的是什么圖形?

              生甲:三角形。

              生乙:直角三角形。

              師:你能計(jì)算出它的面積嗎?

              生:能。

              教師挑一名學(xué)生:你是怎樣算的呢?

              生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

              師:很好!

              教師邊操作邊講解:

              大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來(lái)看看形成的是什么

              圖形?

              學(xué)生完成操作后回答:平行四邊形。

              師:你能計(jì)算它的面積嗎?

              生:能。

              教師挑一名學(xué)生:你是怎么計(jì)算的呢?

              生:以BC為底,A到BC的垂線(xiàn)段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來(lái)看這樣一個(gè)連接成的圖形:

              教師多媒體出示下圖:

            八年級(jí)上冊(cè)數(shù)學(xué)教案14

              教學(xué)目標(biāo)

              1.知識(shí)與技能

              領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

              2.過(guò)程與方法

              經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.

              3.情感、態(tài)度與價(jià)值觀(guān)

              培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

              重、難點(diǎn)與關(guān)鍵

              1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

              2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

              3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的'目的

              教學(xué)方法

              采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

              教學(xué)過(guò)程

              一、回顧交流,導(dǎo)入新知

              【問(wèn)題牽引】

              1.分解因式:

              (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

              (3)x2-0.01y2.

              【知識(shí)遷移】

              2.計(jì)算下列各式:

              (1)(m-4n)2;(2)(m+4n)2;

              (3)(a+b)2;(4)(a-b)2.

              【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

              3.分解因式:

              (1)m2-8mn+16n2(2)m2+8mn+16n2;

              (3)a2+2ab+b2;(4)a2-2ab+b2.

              【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:

              解:

              (1)m2-8mn+16n2=(m-4n)2;

              (2)m2+8mn+16n2=(m+4n)2;

              (3)a2+2ab+b2=(a+b)2;

              (4)a2-2ab+b2=(a-b)2.

              【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

              二、范例學(xué)習(xí),應(yīng)用所學(xué)

              【例1】把下列各式分解因式:

              (1)-4a2b+12ab2-9b3;

              (2)8a-4a2-4;

              (3)(x+y)2-14(x+y)+49;(4)+n4.

              【例2】如果x2+axy+16y2是完全平方,求a的值.

              【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

              三、隨堂練習(xí),鞏固深化

              課本P170練習(xí)第1、2題.

              【探研時(shí)空】

              1.已知x+y=7,xy=10,求下列各式的值.

              (1)x2+y2;(2)(x-y)2

              2.已知x+=-3,求x4+的值.

              四、課堂總結(jié),發(fā)展?jié)撃?/p>

              由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過(guò)來(lái)寫(xiě),就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):

              a2-b2=(a+b)(a-b);

              a2±ab+b2=(a±b)2.

              在運(yùn)用公式因式分解時(shí),要注意:

              (1)每個(gè)公式的形式與特點(diǎn),通過(guò)對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來(lái)確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.

              五、布置作業(yè),專(zhuān)題突破

            八年級(jí)上冊(cè)數(shù)學(xué)教案15

              【教學(xué)目標(biāo)】

              知識(shí)目標(biāo):

              解單項(xiàng)式乘以多項(xiàng)式的意義,理解單項(xiàng)式與多項(xiàng)式的乘法法則,會(huì)進(jìn)行單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算。

              能力目標(biāo):

             。1)經(jīng)歷探索乘法運(yùn)算法則的過(guò)程,發(fā)展觀(guān)察、歸納、猜測(cè)、驗(yàn)證等能力;

             。2)體會(huì)乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。

              情感目標(biāo):

              充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、主動(dòng)性

              【教學(xué)重點(diǎn)】

              單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算

              【教學(xué)難點(diǎn)】

              推測(cè)整式乘法的運(yùn)算法則。

              【教學(xué)過(guò)程】

              一、復(fù)習(xí)引入

              通過(guò)對(duì)已學(xué)知識(shí)的復(fù)習(xí)引入課題(學(xué)生作答)

              1.請(qǐng)說(shuō)出單項(xiàng)式與單項(xiàng)式相乘的法則:

              單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個(gè)因式。

             。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨(dú)的冪

              例如:( 2a2b3c) (-3ab)

              解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

              = -6a3b4c

              2.說(shuō)出多項(xiàng)式2x2-3x-1的項(xiàng)和各項(xiàng)的系數(shù)項(xiàng)分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1

              問(wèn):如何計(jì)算單項(xiàng)式與多項(xiàng)式相乘?例如:2a2· (3a2 - 5b)該怎樣計(jì)算?

              這便是我們今天要研究的'問(wèn)題。

              二、新知探究

              已知一長(zhǎng)方形長(zhǎng)為(a+b+c),寬為m,則面積為:m(a+b+c)

              現(xiàn)將這個(gè)長(zhǎng)方形分割為寬為m,長(zhǎng)分別為a、b、c的三個(gè)小長(zhǎng)方形,其面積之和為ma+mb+mc因?yàn)榉指钋昂箝L(zhǎng)方形沒(méi)變所以m(a+b+c)=ma+mb+mc

              上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個(gè)別同學(xué)作答,教師作評(píng))

              結(jié)論單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則:

              用單項(xiàng)式分別去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

              用字母表示為:m(a+b+c)=ma+mb+mc

              運(yùn)算思路:單×多

              轉(zhuǎn)化

              分配律

              單×單

              三、例題講解

              例計(jì)算:(1)(-2a2)· (3ab2– 5ab3)

             。2)(- 4x) ·(2x2+3x-1)

              解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

              (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

            【八年級(jí)上冊(cè)數(shù)學(xué)教案】相關(guān)文章:

            八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27

            八年級(jí)上冊(cè)數(shù)學(xué)教案12-11

            八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

            人教版八年級(jí)上冊(cè)數(shù)學(xué)教案02-22

            八年級(jí)上冊(cè)數(shù)學(xué)教案優(yōu)秀05-08

            [推薦]八年級(jí)上冊(cè)數(shù)學(xué)教案05-23

            (集合)八年級(jí)上冊(cè)數(shù)學(xué)教案05-24

            初中數(shù)學(xué)教案答案八年級(jí)上冊(cè)最新01-06

            八年級(jí)上冊(cè)數(shù)學(xué)教案(精選20篇)07-12

            八年級(jí)上冊(cè)數(shù)學(xué)教案13篇01-08