亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            八年級數(shù)學(xué)教案

            時(shí)間:2024-06-20 17:52:16 八年級數(shù)學(xué)教案 我要投稿

            (推薦)八年級數(shù)學(xué)教案

              作為一名默默奉獻(xiàn)的教育工作者,往往需要進(jìn)行教案編寫工作,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。那要怎么寫好教案呢?下面是小編為大家整理的八年級數(shù)學(xué)教案,希望對大家有所幫助。

            (推薦)八年級數(shù)學(xué)教案

            八年級數(shù)學(xué)教案1

              一、內(nèi)容和內(nèi)容解析

              1.內(nèi)容

              三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.

              2.內(nèi)容解析

              三角形是一種最基本的幾何圖形,是認(rèn)識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進(jìn)一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解.

              本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系.

              本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系.

              二、目標(biāo)和目標(biāo)解析

              1.教學(xué)目標(biāo)

              (1)了解三角形中的'相關(guān)概念,學(xué)會(huì)用符號語言表示三角形中的對應(yīng)元素.

              (2)理解并且靈活應(yīng)用三角形三邊關(guān)系.

              2.教學(xué)目標(biāo)解析

              (1)結(jié)合具體圖形,識三角形的概念及其基本元素.

              (2)會(huì)用符號、字母表示三角形中的相關(guān)元素,并會(huì)按邊對三角形進(jìn)行分類.

              (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來解決問題.

              三、教學(xué)問題診斷分析

              在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動(dòng)過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.

              四、教學(xué)過程設(shè)計(jì)

              1.創(chuàng)設(shè)情境,提出問題

              問題回憶生活中的三角形實(shí)例,結(jié)合你以前對三角形的了解,請你給三角形下一個(gè)定義.

              師生活動(dòng):先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解.

              【設(shè)計(jì)意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解.

              2.抽象概括,形成概念

              動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫,歸納出三角形的定義.

              師生活動(dòng):

              三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

              【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.

              補(bǔ)充說明:要求學(xué)生學(xué)會(huì)三角形、三角形的頂點(diǎn)、邊、角的概念以及幾何表達(dá)方法.

              師生活動(dòng):結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會(huì)由文字語言向幾何語言的過渡.

              【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對三角形中相關(guān)元素的認(rèn)知,并進(jìn)一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.

              3.概念辨析,應(yīng)用鞏固

              如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來.

              1.以AB為一邊的三角形有哪些?

              2.以∠D為一個(gè)內(nèi)角的三角形有哪些?

              3.以E為一個(gè)頂點(diǎn)的三角形有哪些?

              4.說出ΔBCD的三個(gè)角.

              師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解.

              4.拓廣延伸,探究分類

              我們知道,按照三個(gè)內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進(jìn)行分類,又應(yīng)該如何分呢?小組之間同學(xué)進(jìn)行交流并說說你們的想法.

              師生活動(dòng):通過討論,學(xué)生類比按角的分類方法按邊對三角形進(jìn)行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強(qiáng)化學(xué)生對三角形按邊分類的理解.

            八年級數(shù)學(xué)教案2

              教學(xué)目標(biāo):

              1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

              2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題.

              3.培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來研究問題.

              重點(diǎn)、難點(diǎn)

              1.重點(diǎn):平行四邊形的判定方法及應(yīng)用.

              2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用.

              3.難點(diǎn)的突破方法:

              平行四邊形的判別方法是本節(jié)課的核心內(nèi)容.同時(shí)它又是后面進(jìn)一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說理的良好素材.本節(jié)課的教學(xué)重點(diǎn)為平行四邊形的判別方法.在本課中,可以探索活動(dòng)為載體,并將論證作為探索活動(dòng)的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡單推理有機(jī)融合,達(dá)到突出重點(diǎn)、分散難點(diǎn)的目的.

             。1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的'逆命題,它們的證明都可利用定義或前一個(gè)方法來證明.

              (2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對角線兩方面進(jìn)行記憶.要注意:

              ①本教材沒有把用角來作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補(bǔ)充;

             、诒竟(jié)課只介紹前兩個(gè)判定方法.

              (3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動(dòng)有趣的問題情境,開展有效的數(shù)學(xué)活動(dòng),如通過欣賞圖片及識別圖片中的平行四邊形,使學(xué)生建立對平行四邊形的直覺認(rèn)識.并復(fù)習(xí)平行四邊形的定義,建立新舊知識間的相互聯(lián)系.接著提出問題:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?從而組織學(xué)生主動(dòng)參與、勤于動(dòng)手、積極思考,使他們在自主探究與合作交流的過程中,從整體上把握“平行四邊形的判別”的方法.

              然后利用學(xué)生手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件.

              在學(xué)生拼圖的活動(dòng)中,教師可以以問題串的形式展開對平行四邊形判別方法的探討,讓學(xué)生在問題解決中,實(shí)現(xiàn)對平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說理及簡單推理的能力.

             。4)從本節(jié)開始,就應(yīng)讓學(xué)生直接運(yùn)用平行四邊形的性質(zhì)和判定去解決問題,凡是可以用平行四邊形知識證明的問題,不要再回到用三角形全等證明.應(yīng)該對學(xué)生提出這個(gè)要求.

             。5)平行四邊形知識的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題.例如,求角的度數(shù),線段的長度,證明角相等或線段相等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.

             。6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識,這些知識是本章的重點(diǎn)內(nèi)容,要使學(xué)生熟練地掌握這些知識.

              例題的意圖分析

              本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題.例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來,邊拼圖邊說明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣.如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說明理由.

              課堂引入

              1.欣賞圖片、提出問題.

              展示圖片,提出問題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?

              2.【探究】:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?

              讓學(xué)生利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

              (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

             。2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

             。3)你能說出你的做法及其道理嗎?

             。4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

              (5)你還能找出其他方法嗎?

              從探究中得到:

              平行四邊形判定方法1 兩組對邊分別相等的四邊形是平行四邊形。

              平行四邊形判定方法2 對角線互相平分的四邊形是平行四邊形。

              例習(xí)題分析

              1(教材P96例3)已知:如圖ABCD的對角線AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF.

              求證:四邊形BFDE是平行四邊形.

              分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來證明.

             。ㄗC明過程參看教材)

              問;你還有其它的證明方法嗎?比較一下,哪種證明方法簡單.

              2(補(bǔ)充) 已知:如圖,A′B′∥BA,B′C′∥CB, C′A′∥AC.

              求證:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

              (2) △ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).

              證明:(1)∵A′B′∥BA,C′B′∥BC,

              ∴四邊形ABCB′是平行四邊形.

              ∴ ∠ABC=∠B′(平行四邊形的對角相等).

              同理∠CAB=∠A′,∠BCA=∠C′.

              (2) 由(1)證得四邊形ABCB′是平行四邊形.同理,四邊形ABA′C是平行四邊形.

              ∴ AB=B′C, AB=A′C(平行四邊形的對邊相等).

              ∴ B′C=A′C.

              同理 B′A=C′A, A′B=C′B.

              ∴ △ABC的頂點(diǎn)A、B、C分別是△B′C′A′的邊B′C′、C′A′、A′B′的中點(diǎn).

              3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形.你能在圖中找出所有的平行四邊形嗎?并說說你的理由.

              解:有6個(gè)平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

              理由是:因?yàn)檎鰽BO≌正△AOF,所以AB=BO,OF=FA.根據(jù) “兩組對邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形.其它五個(gè)同理.

              隨堂練習(xí)

              1.如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,

             。1)若AD=8cm,AB=4cm,那么當(dāng)BC=____cm,CD=____cm時(shí),四邊形ABCD為平行四邊形;

             。2)若AC=10cm,BD=8cm,那么當(dāng)AO=___cm,DO=___cm時(shí),四邊形ABCD為平行四邊形.

              2.已知:如圖,ABCD中,點(diǎn)E、F分別在CD、AB上,DF∥BE,EF交BD于點(diǎn)O.求證:EO=OF.

              3.靈活運(yùn)用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個(gè)圖形由(n+1)個(gè)等邊三角形拼成,通過觀察,分析發(fā)現(xiàn):

             、俚4個(gè)圖形中平行四邊形的個(gè)數(shù)為_____.

              (6個(gè))

             、诘8個(gè)圖形中平行四邊形的個(gè)數(shù)為_____.

             。20個(gè))

              課后練習(xí)

              1.(選擇)下列條件中能判斷四邊形是平行四邊形的是( ).

             。ˋ)對角線互相垂直 (B)對角線相等

              (C)對角線互相垂直且相等 (D)對角線互相平分

              2.已知:如圖,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

              求證:BE=CF

            八年級數(shù)學(xué)教案3

              教學(xué)目標(biāo):

              1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會(huì)求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

              2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡單的現(xiàn)象。

              3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會(huì)它們在不同情境中的應(yīng)用。

              4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

              教學(xué)重點(diǎn):體會(huì)平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

              教學(xué)難點(diǎn):對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

              教學(xué)方法:歸納教學(xué)法。

              教學(xué)過程:

              一、知識回顧與思考

              1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

              一般地對于n個(gè)數(shù)X1,……Xn把(X1+X2+…Xn)叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。

              如某公司要招工,測試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計(jì)入總成績,這樣計(jì)算出的成績?yōu)閿?shù)學(xué),語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項(xiàng)測試成績的權(quán)。

              中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

              眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)。

              如3,2,3,5,3,4中3是眾數(shù)。

              2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

             。1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

             。2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。

             。3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的'信息。

             。4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當(dāng)一組數(shù)據(jù)中個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。

              3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

              算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。

              4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。

              利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。

              二、例題講解:

              例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計(jì)了這15人某月的銷售量如下:

              每人銷售件數(shù) 1800 510 250 210 150 120

              人數(shù) 113532

             。1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);

             。2)假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售額定為平均數(shù),你認(rèn)為是否合理,為什么?如不合理,請你制定一個(gè)較合理的銷售定額,并說明理由。

              例2,某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績分別按40%、20%、40%的比例計(jì)入學(xué)期總評成績,小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評成績是多少?

              三、課堂練習(xí):復(fù)習(xí)題A組

              四、小結(jié):

              1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。

              2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

              五、作業(yè):復(fù)習(xí)題B組、C組(選做)

            八年級數(shù)學(xué)教案4

              學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。

              學(xué)習(xí)難點(diǎn):認(rèn)識函數(shù),領(lǐng)會(huì)函數(shù)的意義。

              【自主復(fù)習(xí)知識準(zhǔn)備】

              請你舉出生活中含有兩個(gè)變量的變化過程,說明其中的常量和變量。

              【自主探究知識應(yīng)用】

              請看書72——74頁內(nèi)容,完成下列問題:

              1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

              2、 完成書上第73頁的思考,體會(huì)圖形中體現(xiàn)的變量和變量之間的關(guān)系。

              3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

              歸納:一般的,在一個(gè)變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

              補(bǔ)充小結(jié):

              (1)函數(shù)的定義:

              (2)必須是一個(gè)變化過程;

              (3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對它對應(yīng)。

              三、鞏固與拓展:

              例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

              (1)寫出表示y與x的函數(shù)關(guān)系式.

              (2)指出自變量x的取值范圍.

              (3) 汽車行駛200千米時(shí),油箱中還有多少汽油?

              【當(dāng)堂檢測知識升華】

              1、判斷下列變量之間是不是函數(shù)關(guān)系:

              (1)長方形的寬一定時(shí),其長與面積;

              (2)等腰三角形的底邊長與面積;

              (3)某人的年齡與身高;

              2、寫出下列函數(shù)的解析式.

              (1)一個(gè)長方體盒子高3cm,底面是正方形,這個(gè)長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.

              (2)汽車加油時(shí),加油槍的流量為10L/min.

              ①如果加油前,油箱里還有5 L油,寫出在加油過程中,油箱中的.油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;

             、谌绻佑蜁r(shí),油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.

              (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

              (4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

              八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對性的設(shè)置,希望大家喜歡!

            八年級數(shù)學(xué)教案5

              【教學(xué)目標(biāo)】

              1、了解三角形的中位線的概念

              2、了解三角形的中位線的性質(zhì)

              3、探索三角形的中位線的性質(zhì)的一些簡單的應(yīng)用

              【教學(xué)重點(diǎn)、難點(diǎn)】

              重點(diǎn):三角形的中位線定理。

              難點(diǎn):三角形的中位線定理的.證明中添加輔助線的思想方法。

              【教學(xué)過程】

             。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

              1、如圖,為了測量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

              2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

             。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

             。2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?

              3、引導(dǎo)學(xué)生概括出中位線的概念。

              問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?

              啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。

              4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)

             。ǘ、師生互動(dòng),探究新知

              1、證明你的猜想

              引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。

              (已知:⊿ABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)

              啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)

              啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補(bǔ)短)

              學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強(qiáng)調(diào)有其他證法。

              證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

              ∴∠ADE=∠F,AD=CF,

              ∴AB∥CF。

              又∵BD=AD=CF,

              ∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

              ∴DF∥BC(根據(jù)什么?),

              ∴DE 1/2BC

              2、啟發(fā)學(xué)生歸納定理,并用文字語言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。

             。ㄈ⿲W(xué)以致用、落實(shí)新知

              1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長是多少?

              2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長是多少?

              3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。

              求證:四邊形EFGH是平行四邊形。

              啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?

              啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

              證明:如圖,連接AC。

              ∵EF是⊿ABC的中位線,

              ∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

              同理,HG 1/2AC。

              ∴EF HG。

              ∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

              挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

             。ㄋ模⿲W(xué)生練習(xí),鞏固新知

              1、請回答引例中的問題(1)

              2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點(diǎn)。求證:∠PNM=∠PMN

              (五)小結(jié)回顧,反思提高

              今天你學(xué)到了什么?還有什么困惑?

            八年級數(shù)學(xué)教案6

              【教學(xué)目標(biāo)】

              一、教學(xué)知識點(diǎn)

              1.命題的組成.

              2.命題真假的判斷。

              二、能力訓(xùn)練要求:

              1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

              2.通過舉例判定一個(gè)命題是假命題,使學(xué)生學(xué)會(huì)反面思考問題的方法

              三、情感與價(jià)值觀要求:

              1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一

              2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

              3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價(jià)值

              【教學(xué)重點(diǎn)】準(zhǔn)確的找出命題的條件和結(jié)論

              【教學(xué)難點(diǎn)】理解判斷一個(gè)真命題需要證明

              【教學(xué)方】探討、合作交流

              【教具準(zhǔn)備】投影片

              【教學(xué)過程】

              一、情景創(chuàng)設(shè)、引入新課

              師:如果這個(gè)星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個(gè)周日,我們郊游一定能成行嗎?為什么?

              新課:

             。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

              1.如果兩個(gè)三角形的三條邊對應(yīng)相等,那么這兩個(gè)三角形全等。

              2.如果一個(gè)四邊形的一組對邊平行且相等,那么這個(gè)四邊形是平行四邊形。

              3.如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等。

              4.如果一個(gè)四邊形的對角線相等,那么這個(gè)四邊形是矩形。

              5.如果一個(gè)四邊形的兩條對角線相互垂直,那么這個(gè)四邊形是菱形。

              師:由此可見,每個(gè)命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

              二、例題講解:

              例1:師:下列命題的條件是什么?結(jié)論是什么?

              1.如果兩個(gè)角相等,那么他們是對頂角;

              2.如果a>b,b>c,那么a=c;

              3.兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等;

              4.菱形的四條邊都相等;

              5.全等三角形的面積相等。

              例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。

              2:有的命題的描述沒有用“如果……那么……”的形式,在分析時(shí)可以擴(kuò)展成這種形式,以分清條件和結(jié)論。

              例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

              師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個(gè)命題是假命題,通?梢耘e一個(gè)例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

              教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說明命題錯(cuò)誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

              三、思維拓展:

              拓展1.師:如何證實(shí)一個(gè)命題是真命題呢?請同學(xué)們分小組交流一下。

              教學(xué)建議:不急于解決學(xué)生怎么證實(shí)真命題的問題,可按以下程序設(shè)計(jì)教學(xué)過程

             。1)首先給學(xué)生介紹歐幾里得的`《原本》

              (2)引出概念:公理、定理,證明

              (3)啟發(fā)學(xué)生,現(xiàn)在如何證實(shí)一個(gè)命題的正確性

             。4)給出本套教材所選用如下6個(gè)命題作為公理

              (5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

              拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

              建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實(shí)踐驗(yàn)證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

              練習(xí)書p197習(xí)題6.31

              四、問題式總結(jié)

              師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?

              建議:可對學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點(diǎn)、命題是否都正確、如何判斷一個(gè)命題是假命題、如何證實(shí)一個(gè)命題是真命題。

              作業(yè):書p197習(xí)題6.32、3

              板書設(shè)計(jì):

              定義與命題

              課時(shí)2

              條件

              1.命題的結(jié)構(gòu)特征

              結(jié)論

              1.假命題——可以舉反例

              2.命題真假的判別

              2.真命題——需要證明 學(xué)生活動(dòng)一——

              探索命題的結(jié)構(gòu)特征

              學(xué)生觀察、分組討論,得出結(jié)論:

             。1)這五個(gè)命題都是用“如果……那么……”形式敘述的

             。2)這五個(gè)命題都是由已知得到結(jié)論

             。3)這五個(gè)命題都有條件和結(jié)論

              學(xué)生活動(dòng)二——

              探索命題的條件和結(jié)論

              生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個(gè)三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個(gè)三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

              學(xué)生活動(dòng)三

              探索命題的真假——如何判斷假命題

              生:可以舉一個(gè)例子,說明命題1是不正確的,如圖:

              已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

              生:命題2,若a=10,b=8,c=5,此時(shí)a>b,b>c,但a≠c

              生:由此說明:命題1、2是不正確的

              生:命題3、4、5是正確的

              學(xué)生活動(dòng)四

              探索命題的真假——如何證實(shí)一個(gè)命題是真命題

              學(xué)生交流:

              生:用我們以前學(xué)過的觀察、實(shí)驗(yàn)、驗(yàn)證特例等方法

              生:這些方法往往并不可靠

              生:能夠根據(jù)已知道的真命題證實(shí)呢?

              生:那已經(jīng)知道的真命題又是如何證實(shí)的?

              生:那可怎么辦呢?

              生:可通過證明的方法

              學(xué)生分小組討論得出結(jié)論

              生:命題的結(jié)構(gòu)特征:條件和結(jié)論

              生:命題有真假之分

              生:可以通過舉反例的方法判斷假命題

              生:可通過證明的方法證實(shí)真命題

            八年級數(shù)學(xué)教案7

              一、教材的地位和作用

              現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對稱”的知識,進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、

              性質(zhì)“等腰三角形的兩個(gè)底角相等”是幾何論證過程中,證明“兩個(gè)角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個(gè)角相等”等結(jié)論的重要理論依據(jù)、

              教學(xué)重點(diǎn):

              1、讓學(xué)生主動(dòng)經(jīng)歷思考和探索的過程、

              2、掌握等腰三角形性質(zhì)及其應(yīng)用、

              教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過程、

              二、學(xué)情分析

              本年級的學(xué)生已經(jīng)研究過一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動(dòng)手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會(huì)出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過程中著重關(guān)注的一點(diǎn)、

              三、目標(biāo)分析

              知識與技能

              1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)

              2、了解等邊三角形的概念并探索其性質(zhì)

              3、運(yùn)用等腰三角形的性質(zhì)解決問題

              過程與方法

              1、通過觀察等腰三角形的對稱性,發(fā)展學(xué)生的形象思維、

              2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運(yùn)用數(shù)學(xué)語言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語言表達(dá)能力、

              情感態(tài)度價(jià)值觀:

              1、通過情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識到學(xué)習(xí)等腰三角形的必要性、

              2、通過等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識到科學(xué)結(jié)論的發(fā)現(xiàn),是一個(gè)不斷完善的過程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的.意志品質(zhì)、

              3、通過小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂趣和成就感、

              四、教法分析

              根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、

              設(shè)計(jì)意圖

              同學(xué)們,我們在七年級已研究了一般三角形的性質(zhì),今天我們一起來探究特殊的三角形:等腰三角形、

              等腰三角形的定義

              有兩條邊相等的三角形叫做等腰三角形、

              等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、

              提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?

              首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的

              通過學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、

              剪紙游戲

              你能利用手中的這個(gè)矩形紙片剪出一個(gè)等腰三角形嗎?注意安全呦!

              學(xué)情分析:

              大部分學(xué)生會(huì)有自己的想法,根據(jù)軸對稱圖形的性質(zhì),利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;

              可能還有的同學(xué)會(huì)利用正方形的折法,獲得特殊的等腰直角三角形;

              可能還有同學(xué)先畫圖,再依線條剪得、

              在這個(gè)過程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過程中更好的認(rèn)識自我,建立自信、我不失時(shí)機(jī)的對學(xué)生給予鼓勵(lì)和表揚(yáng),使活動(dòng)更加深入,課堂充滿愉悅和溫馨、

              知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、

              我設(shè)計(jì)了問題:你是如何想到的?為的是剖析學(xué)生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、

              提出問題:

              等腰三角形還有什么性質(zhì)?請?zhí)岢瞿愕牟孪,?yàn)證你的猜想?并填寫在學(xué)案上、

              合作小組活動(dòng)規(guī)則:

              1、有主記錄員記錄小組的結(jié)論;

              2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);

              3、小組探究出的結(jié)論是什么?

              4、說明你們小組所獲得結(jié)論的理由、

              等腰三角形的性質(zhì):

              性質(zhì)一:等腰三角形的兩個(gè)底角相等(簡稱“等邊對等角”)、

              性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、

              學(xué)情分析:這個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會(huì)立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識的形成過程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、

              通過設(shè)置恰當(dāng)?shù)膭?dòng)手實(shí)踐活動(dòng),引導(dǎo)學(xué)生經(jīng)歷觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動(dòng),這種探究的學(xué)習(xí)過程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、

              (1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、

              這種教學(xué)方式,把學(xué)習(xí)的過程真正還給學(xué)生,不怕學(xué)生說不好,不怕學(xué)生出問題,其實(shí)學(xué)生說不好的地方、學(xué)生出問題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長點(diǎn)、

              (2)教師在這個(gè)過程中,充分聽取和參與學(xué)生的小組討論,對有困難的學(xué)生,及時(shí)指導(dǎo)、

              鞏固知識

              1、等腰三角形頂角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為________;

              2、等腰三角形一個(gè)角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____;

              3、等腰三角形一個(gè)角為100°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____、

              內(nèi)化知識

              1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?

              知識遷移

              等邊三角形有什么特殊的性質(zhì)?簡單地?cái)⑹隼碛伞?/p>

              等邊三角形的性質(zhì)定理:

              等邊三角形的各角都相等,并且每一個(gè)角都等于60°、

              拓展延伸

              如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說明BD=EC?

              由于學(xué)生之間存在知識基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識,使學(xué)困生達(dá)到簡單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、

              暢談收獲

              總結(jié)活動(dòng)情況,重在肯定與鼓勵(lì)、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識,運(yùn)用的數(shù)學(xué)思想方法,新舊知識的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識網(wǎng)絡(luò)、分析解決問題的能力、

              幫助學(xué)生梳理知識,回顧探究過程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、

              反思過程不僅是學(xué)生學(xué)習(xí)過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、

              基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4

            八年級數(shù)學(xué)教案8

              教學(xué)目標(biāo):

              1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識,主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

              2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識及能力。

              重點(diǎn)難點(diǎn):

              重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡單的問題。

              難點(diǎn):勾股定理的發(fā)現(xiàn)

              教學(xué)過程

              一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

              出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

              出示投影2(書中的P2圖1—2)并回答:

              1、觀察圖

              1—2,正方形A中有_______個(gè)小方格,即A的面積為______個(gè)單位。

              正方形B中有_______個(gè)小方格,即A的面積為______個(gè)單位。

              正方形C中有_______個(gè)小方格,即A的面積為______個(gè)單位。

              2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:

              3、圖

              1—2中,A,B,C之間的面積之間有什么關(guān)系?

              學(xué)生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?

              二、做一做

              出示投影3(書中P3圖1—4)提問:

              1、圖

              1—3中,A,B,C之間有什么關(guān)系?

              2、圖

              1—4中,A,B,C之間有什么關(guān)系?

              3、從圖

              1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

              學(xué)生討論、交流形成共識后,教師總結(jié):

              以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

              三、議一議

              1、圖

              1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

              2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

              在同學(xué)的交流基礎(chǔ)上,老師板書:

              直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

              也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

              那么

              我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

              3、分別以

              5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測量斜邊的`長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)

              四、想一想

              這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

              五、鞏固練習(xí)

              1、錯(cuò)例辨析:

              △ABC的兩邊為3和4,求第三邊

              解:由于三角形的兩邊為3、4

              所以它的第三邊的c應(yīng)滿足=25

              即:c=5

              辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題

              △ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

              (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

              綜上所述這個(gè)題目條件不足,第三邊無法求得。

              2、練習(xí)P

              7 §1.1 1

              六、作業(yè)

              課本P7 §1.1 2、3、4

            八年級數(shù)學(xué)教案9

              一、教材分析:

              《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容?v觀整個(gè)初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。

              本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。

              (一)知識目標(biāo):

              1、要求學(xué)生掌握正方形的概念及性質(zhì);

              2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計(jì)算、推理、論證;

              (二)能力目標(biāo):

              1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、總結(jié)等能力;

              2、發(fā)展學(xué)生合情推理意識,主動(dòng)探究的習(xí)慣,逐步掌握說理的基本方法;

              (三)情感目標(biāo):

              1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);

              2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;

              3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。

              二、學(xué)生分析:

              該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計(jì)了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。

              三、教法分析:

              針對本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。

              通過學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

              四、學(xué)法分析:

              本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。

              五、教學(xué)程序:

              第一環(huán)節(jié):相關(guān)知識回顧

              以提問的形式復(fù)習(xí)的'平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。

              第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”

              1、正方形的定義

              引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

              2、正方形的性質(zhì)

              定理1:正方形的四個(gè)角都是直角,四條邊都相等;

              定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

              以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。

              3、例題講解

              求證:正方形的兩條對角線把正方形分成四個(gè)全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學(xué)提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時(shí)強(qiáng)調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達(dá)能力,讓學(xué)生的個(gè)性得到充分的展示

              4、課堂練習(xí)

              第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計(jì)算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。

              第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。

              5、課堂小結(jié)

              此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實(shí)自己,達(dá)到理想中的完美。

              6、作業(yè)設(shè)計(jì)

              作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。

            八年級數(shù)學(xué)教案10

              【教學(xué)目標(biāo)】

              1.了解分式概念.

              2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

              【教學(xué)重難點(diǎn)】

              重點(diǎn):理解分式有意義的條件,分式的值為零的條件.

              難點(diǎn):能熟練地求出分式有意義的`條件,分式的值為零的條件.

              【教學(xué)過程】

              一、課堂導(dǎo)入

              1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.

              2.問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?

              設(shè)江水的流速為x千米/時(shí).

              輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.

              3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

              [思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.

              二、例題講解

              例1:當(dāng)x為何值時(shí),分式有意義.

              【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.

              (補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?

              (1);(2);(3).

              【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

              三、隨堂練習(xí)

              1.判斷下列各式哪些是整式,哪些是分式?

              9x+4,,,,,

              2.當(dāng)x取何值時(shí),下列分式有意義?

              3.當(dāng)x為何值時(shí),分式的值為0?

              四、小結(jié)

              談?wù)勀愕氖斋@.

              五、布置作業(yè)

              課本128~129頁練習(xí).

            八年級數(shù)學(xué)教案11

              一.教學(xué)目標(biāo):

              1.了解方差的定義和計(jì)算公式。

              2.理解方差概念的產(chǎn)生和形成的過程。

              3.會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。

              二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

              1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。

              2.難點(diǎn):理解方差公式

              3.難點(diǎn)的突破方法:

              方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。

              (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。

              (2)波動(dòng)性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法?梢援嬚劬圖方法來反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。

              (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。

              三.例習(xí)題的意圖分析:

              1.教材P125的討論問題的意圖:

              (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

              (2).為引入方差概念和方差計(jì)算公式作鋪墊。

              (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。

              (4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。

              2.教材P154例1的設(shè)計(jì)意圖:

              (1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的'規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對方差公式的掌握。

              (2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。

              四.課堂引入:

              除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

              五.例題的分析:

              教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):

              1.題目中“整齊”的含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究兩組數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。

              2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。

              3.方差怎樣去體現(xiàn)波動(dòng)大小?

              這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。

              六.隨堂練習(xí):

              1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

              甲:9、10、11、12、7、13、10、8、12、8;

              乙:8、13、12、11、10、12、7、7、9、11;

              問:(1)哪種農(nóng)作物的苗長的比較高?

              (2)哪種農(nóng)作物的苗長得比較整齊?

              2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?

              測試次數(shù)1 2 3 4 5

              段巍13 14 13 12 13

              金志強(qiáng)10 13 16 14 12

              參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

              2.段巍的成績比金志強(qiáng)的成績要穩(wěn)定。

              七.課后練習(xí):

              1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

              2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

              甲:7、8、6、8、6、5、9、10、7、4

              乙:9、5、7、8、7、6、8、6、7、7

              經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

              3.甲、乙兩臺機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )

              甲:0、1、0、2、2、0、3、1、2、4

              乙:2、3、1、2、0、2、1、1、2、1

              分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺機(jī)床的性能較好?

              4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

              小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

              小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

              如果根據(jù)這幾次成績選拔一人參加比賽,你會(huì)選誰呢?

              答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好

              4. =10.9、S =0.02;

              =10.9、S =0.008

              選擇小兵參加比賽。

            八年級數(shù)學(xué)教案12

              一、學(xué)生起點(diǎn)分析

              學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?

              反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中

              可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。

              二、學(xué)習(xí)任務(wù)分析

              本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

              并利用該定理根據(jù)邊長判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡單的實(shí)際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):

              ● 知識與技能目標(biāo)

              1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

              2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

              ● 過程與方法目標(biāo)

              1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;

              2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

              ● 情感與態(tài)度目標(biāo)

              1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

              2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。

              教學(xué)重點(diǎn)

              理解勾股定理逆定理的具體內(nèi)容。

              三、教法學(xué)法

              1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證

              本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強(qiáng),思維活躍,對通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)

              但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對學(xué)生進(jìn)行引導(dǎo):

              (1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;

              (2)從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程;

              (3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

              2.課前準(zhǔn)備

              教具:教材、電腦、多媒體課件。

              學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

              四、教學(xué)過程設(shè)計(jì)

              本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

              登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

              第一環(huán)節(jié):情境引入

              內(nèi)容:

              情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?

              2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?

              意圖:

              通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

              效果:

              從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

              第二環(huán)節(jié):合作探究

              內(nèi)容1:探究

              下面有三組數(shù),分別是一個(gè)三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問題:

              1.這三組數(shù)都滿足 嗎?

              2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。

              意圖:

              通過學(xué)生的合作探究,得出若一個(gè)三角形的三邊長 ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

              效果:

              經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

              從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:

              如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形

              內(nèi)容2:說理

              提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說服力的理由嗎?

              意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:

              如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形

              滿足 的三個(gè)正整數(shù),稱為勾股數(shù)。

              注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級,還可利用幾何畫板動(dòng)畫演示,讓同學(xué)有一個(gè)直觀的認(rèn)識。

              活動(dòng)3:反思總結(jié)

              提問:

              1.同學(xué)們還能找出哪些勾股數(shù)呢?

              2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

              3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?

              4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

              意圖:進(jìn)一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系

              第三環(huán)節(jié):小試牛刀

              內(nèi)容:

              1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

             、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

              解答:①②

              2.一個(gè)三角形的三邊長分別是 ,則這個(gè)三角形的面積是( )

              A 250 B 150 C 200 D 不能確定

              解答:B

              3.如圖1:在 中, 于 , ,則 是( )

              A 等腰三角形 B 銳角三角形

              C 直角三角形 D 鈍角三角形

              解答:C

              4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

              得到的三角形是( )

              A 直角三角形 B 銳角三角形

              C 鈍角三角形 D 不能確定

              解答:A

              意圖:

              通過練習(xí),加強(qiáng)對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用

              效果

              每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識。

              第四環(huán)節(jié):登高望遠(yuǎn)

              內(nèi)容:

              1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?

              解答:符合要求 , 又 ,

              2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

              解答:由題意畫出相應(yīng)的圖形

              AB=240海里,BC=70海里,,AC=250海里;在△ABC中

              =(250+240)(250-240)

              =4900= = 即 △ABC是Rt△

              答:船轉(zhuǎn)彎后,是沿正西方向航行的。

              意圖:

              利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。

              效果:

              學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。

              第五環(huán)節(jié):鞏固提高

              內(nèi)容:

              1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。

              解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

              2.如圖5,哪些是直角三角形,哪些不是,說說你的'理由?

              圖4 圖5

              解答:④⑤是直角三角形,①②③⑥不是直角三角形

              意圖:

              第一題考查學(xué)生充分利用所學(xué)知識解決問題時(shí),考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問題。

              效果:

              學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

              第六環(huán)節(jié):交流小結(jié)

              內(nèi)容:

              師生相互交流總結(jié)出:

              1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱為勾股數(shù);

              2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。

              意圖:

              鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識。

              效果:

              學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。

              第七環(huán)節(jié):布置作業(yè)

              課本習(xí)題1.4第1,2,4題。

              五、教學(xué)反思:

              1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長 ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。

              2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

              3.在利用今天所學(xué)知識解決實(shí)際問題時(shí),引導(dǎo)學(xué)生善于對公式變形,便于簡便計(jì)算。

              4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

              5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。

              由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

              附:板書設(shè)計(jì)

              能得到直角三角形嗎

              情景引入 小試牛刀: 登高望遠(yuǎn)

            八年級數(shù)學(xué)教案13

              教學(xué)內(nèi)容

              本節(jié)課主要介紹全等三角形的概念和性質(zhì).

              教學(xué)目標(biāo)

              1.知識與技能

              領(lǐng)會(huì)全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念.

              2.過程與方法

              經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角.

              3.情感、態(tài)度與價(jià)值觀

              培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.

              重、難點(diǎn)與關(guān)鍵

              1.重點(diǎn):會(huì)確定全等三角形的對應(yīng)元素.

              2.難點(diǎn):掌握找對應(yīng)邊、對應(yīng)角的方法.

              3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個(gè)對應(yīng)角所夾的邊是對應(yīng)邊;(2)對應(yīng)邊所對的角是對應(yīng)角,?兩條對應(yīng)邊所夾的角是對應(yīng)角.教具準(zhǔn)備

              四張大小一樣的紙片、直尺、剪刀.

              教學(xué)方法

              采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的.實(shí)例,加深認(rèn)識.教學(xué)過程

              一、動(dòng)手操作,導(dǎo)入課題

              1.先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

              2.重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

              【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.

              【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.

              學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過程要細(xì)心.

              【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“≌”表示.

              概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.

              【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?

              【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.

              【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對邊.

              【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?

              【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論:

              1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.

              2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.

              3.完全重合說明三條邊對應(yīng)相等,三個(gè)內(nèi)角對應(yīng)相等,?對應(yīng)頂點(diǎn)在相對應(yīng)的位置.

            八年級數(shù)學(xué)教案14

              教材分析

              1、本小節(jié)內(nèi)容安排在第十四章“軸對稱”的第三節(jié)。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識,重點(diǎn)是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據(jù),這也是全章的'重點(diǎn)之一。

              2、本節(jié)重在呈現(xiàn)一個(gè)動(dòng)手操作得出概念、觀察實(shí)驗(yàn)得出性質(zhì)、推理證明論證性質(zhì)的過程,學(xué)生通過學(xué)習(xí),既體會(huì)到一個(gè)觀察、實(shí)驗(yàn)、猜想、論證的研究幾何圖形問題的全過程,又能夠運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運(yùn)用知識和技能解決問題的能力。

              學(xué)情分析

              1、學(xué)生在此之前已接觸過等腰三角形,具有運(yùn)用全等三角形的判定及軸對稱的知識和技能,本節(jié)教學(xué)要突出“自主探究”的特點(diǎn),即教師引導(dǎo)學(xué)生通過觀察、實(shí)驗(yàn)、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新知、獲得新知的樂趣。

              2、在與等腰三角形有關(guān)的一些命題的證明過程中,會(huì)遇到一些添加輔助線的問題,這會(huì)給學(xué)生的學(xué)習(xí)帶來困難。另外,以前學(xué)生證明問題是習(xí)慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質(zhì)的問題,沒有注意選擇簡便方法。

              教學(xué)目標(biāo)

              知識技能:1、理解掌握等腰三角形的性質(zhì)。

              2、運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。

              數(shù)學(xué)思考:1、觀察等腰三角形的對稱性,發(fā)展形象思維。

              2、通過時(shí)間、觀察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。

              情感態(tài)度:引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識解決問題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。

              教學(xué)重點(diǎn)和難點(diǎn)

              重點(diǎn):等腰三角形的性質(zhì)及應(yīng)用。

              難點(diǎn):等腰三角形的性質(zhì)證明。

            八年級數(shù)學(xué)教案15

              一、課堂導(dǎo)入

              回顧平行四邊的性質(zhì)定理及定義

              1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?

              2.將以上的性質(zhì)定理,分別用命題形式敘述出來。(如果……那么……)

              根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個(gè)四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?

              二、新課講解

              平行四邊形的判定:

              (定義法):兩組對邊分別平行的四邊形的平邊形。

              幾何語言表達(dá)定義法:

              ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

              解析:一個(gè)四邊形只要其兩組對邊分別互相平行,則可判定這個(gè)四邊形是一個(gè)平行四邊形。

              活動(dòng):用做好的紙條拼成一個(gè)四邊形,其中強(qiáng)調(diào)兩組對邊分別相等。

              (平行四邊形判定定理):

              (一)兩組對邊分別相等的四邊形是平行四邊形。

              設(shè)問:這個(gè)命題的前提和結(jié)論是什么?

              已知:四邊形ABCD中,AB=CD,BC=DA。

              求證:四邊ABCD是平行四邊形。

              分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。

              板書證明過程。

              小結(jié):用幾何語言表達(dá)用定義法和剛才證明為正確的方法證明一個(gè)四邊形是平行四邊形的方法為:

              平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

              (二)設(shè)問:若一個(gè)四邊形有一組對邊平行且相等,能否判定這個(gè)四邊形也是平行四邊形呢?

              活動(dòng):課本探究內(nèi)容,并用事準(zhǔn)備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的端點(diǎn)為四邊形的`頂點(diǎn),則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點(diǎn)為頂點(diǎn)組成的四邊形是不是平行四邊形?

              設(shè)問:我們能否用推理的方法證明這個(gè)命題是正確的呢?(讓學(xué)生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過程。)

            【八年級數(shù)學(xué)教案】相關(guān)文章:

            八年級的數(shù)學(xué)教案12-14

            八年級《函數(shù)》數(shù)學(xué)教案08-17

            八年級數(shù)學(xué)教案12-09

            人教版八年級數(shù)學(xué)教案11-04

            八年級數(shù)學(xué)教案【精】12-04

            八年級數(shù)學(xué)教案【推薦】12-04

            八年級下冊數(shù)學(xué)教案01-01

            八年級的數(shù)學(xué)教案15篇12-14

            八年級上冊數(shù)學(xué)教案12-11

            八年級數(shù)學(xué)教案[精品]05-29