有理數(shù)的乘法數(shù)學教案
作為一名優(yōu)秀的教育工作者,常常要根據(jù)教學需要編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。怎樣寫教案才更能起到其作用呢?以下是小編整理的有理數(shù)的乘法數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。
有理數(shù)的乘法數(shù)學教案1
教學目的:
。ㄒ唬┲R點目標:有理數(shù)的乘法運算律。
。ǘ┠芰τ柧毮繕耍
1、經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2、能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1、在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2、在討論的過程中,使學生感受集體的力量,培養(yǎng)團隊意識。
教學重點:
乘法運算律的運用。
教學難點:
乘法運算律的運用。
教學方法:
探究交流相結(jié)合。
創(chuàng)設問題情境,引入新課
[活動1]
問題1:有理數(shù)的加法具有交換律和結(jié)合律,在以前學過的范圍內(nèi)乘法交換律、結(jié)合律,以及乘法對加法的分配律都是成立的,那么在有理數(shù)的范圍內(nèi),乘法的這些運算律成立嗎?
問題2:計算下列各題:
。1)(—7)×8;
。2)8×(—7);
。5)[3×(—4)]×(—5);
。6)3×[(—4)×(—5)];
[師生]由學生自主探索,教師可參與到學生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)
[師]同學們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(—7)]和5×3十5×(—7);(略)
[師](—5)×(3—7)和(—5)×3—5×7的結(jié)果相等嗎?
。ㄗ⒁猓海ā5)×(3—7)中的3—7應看作3與(—7)的和,才能應用分配律。否則不能直接應用分配律,因為減法沒有分配律。)
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
應得出:
1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
2、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3、一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導學生討論、交流,從中體會學習的.快樂。
用簡便方法計算。
[活動4]
練習(教科書第42頁)
課時小結(jié):
這節(jié)課我們學習乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。
課后作業(yè):課本習題1.4的第7題(3)、(6)。
活動與探究:
用簡便方法計算:
(1)6.868×(—5)+6.868×(一12)+6.868×(+17)
。2)[(4×8)×25一8]×125
有理數(shù)的乘法數(shù)學教案2
一、教學目標
1.使學生在了解有理數(shù)乘法的意義的基礎上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;
2.培養(yǎng)學生觀察、歸納、概括及運算能力
3 使學生掌握多個有理數(shù)相乘的積的符號法則;
二、教學重點和難點
重點:有理數(shù)乘法的運算.
難點:有理數(shù)乘法中的符號法則.
三.教學手段
現(xiàn)代課堂教學手段
四.教學方法
啟發(fā)式教學
五、教學過程
(一)、研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解①32=6
答:上升了6厘米.
問題2 水庫的水位平均每小時上升-3厘米,2小時上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引導學生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的'積是原來的積的相反數(shù).
這是一條很重要的結(jié)論,應用此結(jié)論,3(-2)=?(-3)(-2)=?(學生答)
把3(-2)和①式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應是原來的積6的相反數(shù)-6,即3(-2)=-6.
把(-3)(-2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應是原來的積-6的相反數(shù)6,即(-3)(-2)=6.
有理數(shù)的乘法數(shù)學教案3
一、學情分析:
1、學生的知識技能基礎:學生在小學已經(jīng)學習過非負有理數(shù)的四則運算以及運算律。在本章的前面幾節(jié)課中,又學習了數(shù)軸、相反數(shù)、絕對值的有關概念,并掌握了有理數(shù)的加減運算法則及其混和運算的方法,學會了由運算解決簡單的實際問題,具備了學習有理數(shù)乘法的知識技能基礎。
2、學生的活動經(jīng)驗基礎:在相關知識的學習過程中,學生已經(jīng)歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學活動經(jīng)驗,同時在以前的學習中,學生曾經(jīng)歷了合作學習和探索學習的過程,具有了合作和探索的意識。
二、 教材分析:
教科書基于學生已掌握了有理數(shù)加法、減法運算法則的基礎上,提出了本節(jié)課的具體學習任務:發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進行有理數(shù)的運算。
本節(jié)課的數(shù)學目標是:
。薄⒔(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;
。、學會進行有理數(shù)的乘法運算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:
三、教學過程設計:
本節(jié)課設計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗證明確結(jié)論;第四環(huán)節(jié):運用鞏固,練習提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):問題情境,引入新課
問題:(1)觀察教科書給出的.圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學生討論思考如何解答。
。ǎ玻┤绻谜柋硎舅簧仙秘撎柋硎舅幌陆,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。
設計意圖:培養(yǎng)學生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式
(-3×4)=-12,那么下列一組算式的結(jié)果應該如何計算?請同學們思考:
。ǎ常粒常剑撸撸撸撸撸
。ǎ常粒玻剑撸撸撸撸撸
。ǎ常粒保剑撸撸撸撸;
(-3)×0=_____。
。ǎ玻┊斖瑢W們寫出結(jié)果并說明道理時,讓學生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
。ǎ常粒ǎ常剑撸撸撸撸撸
。ǎ常粒ǎ矗剑撸撸撸撸。
教前設計意圖:以算式求解和探究問題的形式引導學生逐步深入的觀察思考,從負數(shù)與非負數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負數(shù)與負數(shù)相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項:(1)本環(huán)節(jié)的設計理念是學生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補充,完善結(jié)論。但在實際過程中,學生對結(jié)論的表述有困難,或者表達不準確,不全面,對于這些問題,不能求全責備,而應循循善誘,順勢引導,幫助學生盡可能簡練準確的表述,也不要擔心時間不足而代替學生直接表述法則。
。ǎ玻┱故緝山M算式時,注意板書藝術,把算式豎排,并對齊書寫,這樣易于學生觀察特點,發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗證明確結(jié)論
問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,絕對值相乘,任何數(shù)與零相乘,積仍為零。進行驗證活動,出示一組算式由學生完成。
4×(-4)=_____;
。础粒ǎ常剑撸撸撸撸;
。础粒ǎ玻剑撸撸撸撸撸
。础粒ǎ保剑撸撸撸撸撸
。ā矗粒埃剑撸撸撸撸撸
。ā矗粒保剑撸撸撸撸;
。ā矗粒玻剑撸撸撸撸;
。ā矗粒ǎ保剑撸撸撸撸;
。ā矗粒ǎ玻剑撸撸撸撸。
教前設計意圖:這個環(huán)節(jié)的設計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習和熟悉過程。
教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學中應該設計這個環(huán)節(jié),確實讓學生體驗經(jīng)歷驗證過程。
。ǎ玻┍经h(huán)節(jié)的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。
。ǎ常┰谟贸朔ǚ▌t計算時,要注意其運算步驟與加法運算一樣,都是先確定結(jié)果的符號,再進行絕對值的運算。另外還應注意:法則中的“同號得正,異號得負”是專指“兩數(shù)相乘而言的,”不可以運用到加法運算中去。
第四環(huán)節(jié):運用鞏固,練習提高
活動內(nèi)容:
。ǎ保。計算:
、牛ǎ矗粒; ⑵(5-)×(-7);
、牵ǎ3÷8)×(-8÷3);⑷(-3)×(-1÷3);
。ǎ玻病S嬎悖
、牛ǎ矗粒怠粒ǎ啊#玻担; ⑵(-3÷5)×(-5÷6)×(-2);
3。“議一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?
。ǎ矗┯嬎悖
、牛ǎ8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
、2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
、5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設計意圖:對有理數(shù)乘法法則的鞏固和運用,練習和提高.
教后反思事項:(1)學生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運算應注明理由,運算熟練后,可不要求書寫每一步的理由;
。2)例2講解之后,要啟發(fā)學生完成"議一議"的內(nèi)容,鼓勵學生通過對例2的運算結(jié)果觀察分析,用自己的語言表達所發(fā)現(xiàn)的規(guī)律,學生有困難時,教師可設置如下一組算式讓學生計算后觀察發(fā)現(xiàn)規(guī)律,而不應代替學生完成這個任務。
(-1)×2×3×4=_____;
。ǎ保粒ǎ玻粒场粒矗剑撸撸撸撸;
(-1)×(-2)×(-3)×4=_____;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗剑撸撸撸撸撸
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗粒埃剑撸撸撸撸摺
通過對以上算式的計算和觀察,學生不難得出結(jié)論:多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當然這段語言,不需要讓學習背誦,只要理解會用即可。
第五環(huán)節(jié):感悟反思課堂
問題
1.本節(jié)課大家學會了什么?
2.有理數(shù)乘法法則如何敘述?”
3.有理數(shù)乘法法則的探索采用了什么方法?
4.你的困惑是什么
教前設計意圖:培養(yǎng)學生的口頭表達能力,提高學生的參與意識。激勵學生展示自我。
教后反思事項:學生時,可能會有語言表達障礙或表達不流暢,但只要不影響運算的正確性,則不必強調(diào)準確記憶,而應鼓勵學生大膽發(fā)言,同時教師可用準確的語言適時的加以點撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴廣1
預習作業(yè);略
四、教學反思:
1、設計條理的問題串,使觀察、猜想、驗證水到渠成
2、相信學生的探索能力。本節(jié)課的內(nèi)容適合學生探索,只要教師適當引導,學生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
。场⒑侠硎褂枚嗝襟w教學手段可以彌補課堂時間的不足,但絕不能代替必要的板書。
有理數(shù)的乘法數(shù)學教案4
一、 教學目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
二、 教學重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、 教學過程
1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?學生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
、 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
③ 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
(2)學生歸納法則
①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
(+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
(+)×(-)=( ) 異號得
。-)×(-)=( ) 同號得
、诜e的絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
(3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學生述說每一步理由。
。2)引導學生觀察、分析例子中兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的.積為 。
(3)學生做練習,教師評析。
。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。
有理數(shù)的乘法數(shù)學教案5
一、 學情分析:
在此之前,本班學生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學生能在教師指導下探索問題。由于學生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。
二、 課前準備
把學生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學習、組間競爭學習,形成良好的學習氣氛。
三、 教學目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
四、 教學重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
五、 教學過程
1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?
學生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、 小組探索、歸納法則
。1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
a. 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
b. -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
c. 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
d. (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。
。2)學生歸納法則
a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)= 同號得
(-)×(+)= 異號得
。+)×(-)= 異號得
。-)×(-)= 同號得
b.積的絕對值等于 。
c.任何數(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學生述說每一步理由。
。2)引導學生觀察、分析例1中(3)(4)小題兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學生做 P76 練習1(1)(3),教師評析。
。4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當負因數(shù)個數(shù)有 ,積為 ; 當負因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。
4、 討論對比,使學生知識系統(tǒng)化。
有理數(shù)乘法 | 有理數(shù)加法 | |
同號 | 得正 | 取相同的符號 |
把絕對值相乘 (-2)×(-3)=6 | 把絕對值相加 (-2)+(-3)=-5 | |
異號 | 得負 | 取絕對值大的`加數(shù)的符號 |
把絕對值相乘 (-2)×3= -6 | (-2)+3=1 用較大的絕對值減小的絕對值 | |
任何數(shù)與零 | 得零 | 得任何數(shù) |
5、 分層作業(yè),鞏固提高。
有理數(shù)的乘法數(shù)學教案6
教學目標
1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2。能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學生掌握多個有理數(shù)相乘的積的符號法則;
3。三個或三個以上不等于0的有理數(shù)相乘時,能正確應用乘法交換律、結(jié)合律、分配律簡化運算過程;
4。通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學生的運算能力;
5。本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學生感知到數(shù)學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
重點:
是否能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學習除法運算和乘方運算的基礎。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
難點:
理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。
。ǘ┲R結(jié)構
。ㄈ┙谭ńㄗh
1。有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2。兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”。絕對值相乘也就是小學學過的'算術乘法。
3;A較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4。幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
5。小學學過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。
6。如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。
教學設計示例
有理數(shù)的乘法(第一課時)
教學目標
1。使學生在了解有理數(shù)的乘法意義基礎上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2。通過有理數(shù)的乘法運算,培養(yǎng)學生的運算能力;
3。通過教材給出的行程問題,認識數(shù)學來源于實踐并反作用于實踐。
教學重點和難點
重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;
難點:有理數(shù)乘法法則的理解。
課堂教學過程設計
一、從學生原有認知結(jié)構提出問題
1。計算(—2)+(—2)+(—2)。
2。有理數(shù)包括哪些數(shù)?小學學習四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))
3。有理數(shù)加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)[
4。根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學習的除法中將引出的新內(nèi)容以及關鍵問題是什么?(負數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
問題2水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引導學生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
這是一條很重要的結(jié)論,應用此結(jié)論,3×(—2)=?(—3)×(—2)=?(學生答)
把3×(—2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應是原來的積“6”的相反數(shù)“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應是原來的積“—6”的相反數(shù)“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
綜合上面各種情況,引導學生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
任何數(shù)同0相乘,都得0。
繼而教師強調(diào)指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學學習的乘法,有理數(shù)中特別注意“負負得正”和“異號得負”。
用有理數(shù)乘法法則與小學學習的乘法相比,由于介入了負數(shù),使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結(jié)為小學的乘法了。
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值。
三、運用舉例,變式練習
例某一物體溫度每小時上升a度,現(xiàn)在溫度是0度。
(1)t小時后溫度是多少?
(2)當a,t分別是下列各數(shù)時的結(jié)果:
、賏=3,t=2;②a=—3,t=2;
、赼=3,t=—2;④a=—3,t=—2;
教師引導學生檢驗一下(2)中各結(jié)果是否合乎實際。
課堂練習
1?诖穑
。1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
。4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
(7)(—6)×0;(8)0×(—6);
2?诖穑
(1)1×(—5);(2)(—1)×(—5);(3)+(—5);
(4)—(—5);(5)1×a;(6)(—1)×a。
這一組題做完后讓學生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同時教師強調(diào)指出,a可以是正數(shù),也可以是負數(shù)或0;—a未必是負數(shù),也可以是正數(shù)或0。
3。填空:
。1)1×(—6)=______;(2)1+(—6)=_______;
。3)(—1)×6=________;(4)(—1)+6=______;
。5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
。9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判斷下列方程的解是正數(shù)還是負數(shù)或0:
。1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小結(jié)
今天主要學習了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”。
五、作業(yè)
1。計算:
(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
。4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”號連接):
(1)如果a<0,b<0,那么ab________0;
。2)如果a<0,b<0,那么ab_______0;
。3)如果a>0時,那么a____________2a;
。4)如果a<0時,那么a__________2a。
探究活動
問題:桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案:“±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下。道理很簡單,用“+1”表示杯口朝上,“—1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成—1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1)。而7個杯口全部朝下時,7個數(shù)的乘積等于—1,這是不可能的。
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言。
【有理數(shù)的乘法數(shù)學教案】相關文章:
有理數(shù)的乘法數(shù)學教案優(yōu)秀03-26
有理數(shù)的乘法08-16
有理數(shù)的乘法說課稿08-14
有理數(shù)乘法說課稿11-21
初一數(shù)學教案:《有理數(shù)的乘法》3篇11-03
初一數(shù)學教案:《有理數(shù)的乘法》(精選10篇)04-20
有理數(shù)的乘法教學反思08-25
《有理數(shù)的乘法》教學反思05-24