初中七年級數(shù)學(xué)教案
作為一位杰出的教職工,總不可避免地需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。教案應(yīng)該怎么寫才好呢?以下是小編為大家收集的初中七年級數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。
初中七年級數(shù)學(xué)教案1
教學(xué)目標(biāo)
1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點和難點
重點:列代數(shù)式.
難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1?用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;( -7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴嬎汴P(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?
二、講授新課
例1 用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本題應(yīng)由學(xué)生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2 用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的 與乙數(shù)的 的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本題應(yīng)由學(xué)生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?
例3 用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n; (2)5m+2?
(這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)?
例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?
分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)
例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個; (2)( m)m個?
三、課堂練習(xí)
1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的'和小3的數(shù); (2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、師生共同小結(jié)
首先,請學(xué)生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握?
五、作業(yè)
1?用代數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2?已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.
當(dāng)圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:
=99a+b(cm)
初中七年級數(shù)學(xué)教案2
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習(xí)
1、教科書第3頁練習(xí)1、2。
2、補充練習(xí):檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
。2)2y(y-1)=3(y=-1,y=2)
。3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)。教科書第3頁,習(xí)題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學(xué)目的
通過天平實驗,讓學(xué)生在觀察、思考的`基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學(xué)過程
一、引入
上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。
二、新授
讓我們先做個實驗,拿出預(yù)先準(zhǔn)備好的天平和若干砝碼。
測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當(dāng)天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。
如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。
初中七年級數(shù)學(xué)教案3
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進(jìn)一步發(fā)展推理能力和有條理表達(dá)能力.
2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想
學(xué)習(xí)重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯角也相等.( )
2.兩條直線被第三條直線所截,如果內(nèi)錯角互補,那么同旁內(nèi)角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_(dá)______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.
五、作業(yè)課本15頁-16頁練習(xí)的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進(jìn)一步發(fā)展空
間觀念,推理能力和有條理表達(dá)能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進(jìn)行說理.
學(xué)習(xí)重點:直線平行的`條件的應(yīng)用.
學(xué)習(xí)難點:選取適當(dāng)判定直線平行的方法進(jìn)行說理是重點也是難點.
一、學(xué)習(xí)過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習(xí):
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
初中七年級數(shù)學(xué)教案4
教學(xué)目標(biāo)
使學(xué)生進(jìn)一步理解立方根的概念,并能熟練地進(jìn)行求一個數(shù)的立方根的運算;
能用有理數(shù)估計一個無理數(shù)的大致范圍,使學(xué)生形成估算的意識,培養(yǎng)學(xué)生的估算能力;
經(jīng)歷運用計算器探求數(shù)學(xué)規(guī)律的過程,發(fā)展合情推理能力。
教學(xué)難點
用有理數(shù)估計一個無理的大致范圍。
知識重點
用有理數(shù)估計一個無理的大致范圍。
對于計算器的使用,在教學(xué)中采用學(xué)生自己閱讀計算器的說明書、自己操作練習(xí)來掌握用計算器進(jìn)行開立方運算的方法,并讓學(xué)生互相交流,讓學(xué)生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數(shù)量間的關(guān)系與變化帶來方便。在教學(xué)過程中,教師要關(guān)注學(xué)生能否通過閱讀,掌握用計算器進(jìn)行開立方運算的簡單操作;能否利用計算器探究數(shù)量間的關(guān)系,從而尋找出數(shù)量的變化關(guān)系。
使用計算器進(jìn)行復(fù)雜運算,可以使學(xué)生學(xué)習(xí)的重點更好地集中到理解數(shù)學(xué)的本質(zhì)上來,而估算也是一種具有實際應(yīng)用價值的運算能力,在本節(jié)課的課堂教學(xué)中綜合運用筆算、計算器和估算等培養(yǎng)學(xué)生的運算能力。知識點一:多邊形的概念
、哦噙呅味x:在平面內(nèi),由一些線段首位順次相接組成的圖形叫做________、
如果一個多邊形由n條線段組成,那么這個多邊形叫做____________。(一個多邊形由幾條線段組成,就叫做幾邊形、)
多邊形的表示:用表示它的各頂點的'大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序。如五邊形ABCDE。
、贫噙呅蔚倪叀㈨旤c、內(nèi)角和外角、
多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________、
、嵌噙呅蔚膶蔷
連接多邊形的不相鄰的兩個頂點的線段,叫做___________________、畫一個五邊形ABCDE,并畫出所有的對角線。知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們在習(xí)題、練習(xí)中提到的多邊形都是______多邊形、
知識點二:正多邊形
各個角都相等,各條邊都相等的多邊形叫做_____________、
探究多邊形的對角線條數(shù)
知識點三:多邊形的內(nèi)角和公式推導(dǎo)
1、我們知道三角形的內(nèi)角和為__________、
2、我們還知道,正方形的四個角都等于____°,那么它的內(nèi)角和為_____°,同樣長方形的內(nèi)角和也是______°、
3、正方形和長方形都是特殊的四邊形,其內(nèi)角和為360度,那么一般的四邊形的內(nèi)角和為多少呢?
4、畫一個任意的四邊形,用量角器量出它的四個內(nèi)角,計算它們的和,與同伴交流你的結(jié)果、從中你得到什么結(jié)論?
探究1:任意畫一個四邊形,量出它的4個內(nèi)角,計算它們的和、再畫幾個四邊形,?量一量、算一算、你能得出什么結(jié)論?能否利用三角形內(nèi)角和等于180?°得出這個結(jié)論?結(jié)論:。
探究2:從上面的問題,你能想出五邊形和六邊形的內(nèi)角和各是多少嗎?觀察圖3,?請?zhí)羁眨?/p>
。1)從五邊形的一個頂點出發(fā),可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內(nèi)角和等于180°×______、
。2)從六邊形的一個頂點出發(fā),可以引_____條對角線,它們將六邊形分為_____個三角形,六邊形的內(nèi)角和等于180°×______、探究3:一般地,怎樣求n邊形的內(nèi)角和呢?請?zhí)羁眨?/p>
從n邊形的一個頂點出發(fā),可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內(nèi)角和等于180°×______、
綜上所述,你能得到多邊形內(nèi)角和公式嗎?設(shè)多邊形的邊數(shù)為n,則
n邊形的內(nèi)角和等于______________、
想一想:要得到多邊形的內(nèi)角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形、除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內(nèi)角和公式嗎?
知識點四:多邊形的外角和
探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和、六邊形的外角和等于多少?
問題:如果將六邊形換為n邊形(n是大于等于3的整數(shù)),結(jié)果還相同嗎?多邊形的外角和定理:。理解與運用
例1如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系?已知:四邊形ABCD的∠A+∠C=180°、求:∠B與∠D的關(guān)系、
自我檢測:
。ㄒ唬、判斷題、
1、當(dāng)多邊形邊數(shù)增加時,它的內(nèi)角和也隨著增加、()
2、當(dāng)多邊形邊數(shù)增加時、它的外角和也隨著增加、()
3、三角形的外角和與一多邊形的外角和相等、()
4、從n邊形一個頂點出發(fā),可以引出(n一2)條對角線,得到(n一2)個三角形、()
5、四邊形的四個內(nèi)角至少有一個角不小于直角、()
。ǘ、填空題、
1、一個多邊形的每一個外角都等于30°,則這個多邊形為
2、一個多邊形的每個內(nèi)角都等于135°,則這個多邊形為
3、內(nèi)角和等于外角和的多邊形是邊形、
4、內(nèi)角和為1440°的多邊形是
5、若多邊形內(nèi)角和等于外角和的3倍,則這個多邊形是邊形、
6、五邊形的對角線有
7、一個多邊形的內(nèi)角和為4320°,則它的邊數(shù)為
8、多邊形每個內(nèi)角都相等,內(nèi)角和為720°,則它的每一個外角為
9、四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠、
10、四邊形的四個內(nèi)角中,直角最多有個,鈍角最多有銳角最
(三)解答題
1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?
2、在每個內(nèi)角都相等的多邊形中,若一個外角是它相鄰內(nèi)角的則這個多邊形是幾邊形?
3、若一個多邊形的內(nèi)角和與外角和的比為7:2,求這個多邊形的邊數(shù)。
4、一個多邊形的每一個內(nèi)角都等于其相等外角的
5、一個多邊形少一個內(nèi)角的度數(shù)和為2300°、
。1)求它的邊數(shù);
。2)求少的那個內(nèi)角的度數(shù)、
初中七年級數(shù)學(xué)教案5
一、 基本情況分析
1、學(xué)生情況分析
這學(xué)期我承擔(dān)七(1)(2)兩班的數(shù)學(xué)教學(xué),這些學(xué)生整體基礎(chǔ)參差不齊,小學(xué)沒有養(yǎng)成良好的學(xué)習(xí)習(xí)慣,所以任務(wù)艱巨。在小學(xué)所學(xué)知識的掌握程度上,對優(yōu)生來說,能夠透徹理解知識,知識間的內(nèi)在聯(lián)系也較為清楚,但位數(shù)不多。對多數(shù)學(xué)生來說,簡單的基礎(chǔ)知識還不能有效掌握,成績稍差。學(xué)生的邏輯推理、邏輯思維能力,計算能力要得到加強,還要提升整體成績,適時補充課外知識,拓展學(xué)生的知識面,抽出一定的時間給強化幾何訓(xùn)練,全面提升學(xué)生的數(shù)學(xué)素質(zhì)。
2、教材分析:
1、第1章有理數(shù):本章主要學(xué)習(xí)有理數(shù)的基本性質(zhì)及運算。本章重點內(nèi)容是有理數(shù)的概念,性質(zhì)和運算。本章的難點在于理解有理數(shù)的基本性質(zhì)、運算法則,并將它們應(yīng)用到解決實際問題和計算中。
2、第2章整式的加減:本章主要是學(xué)習(xí)單項式和多項式的加減運算。本章重點內(nèi)容是單項式、多項式、同類項的概念;合并同類項及去括號的法則及整式的加減運算。本章難點在于理解合并同類項和去括號的法則。
3、第3章一元一次方程:本章主要學(xué)習(xí)一元一次方程的概念、等式的基本性質(zhì)、一元一次方程的解法及應(yīng)用。本章重點內(nèi)容是理解等式的基本性質(zhì);掌握解一元一次方程的一般步驟;列方程解決實際問題的基本思路。本章難點在于解一元一次方程,并利用一元一次方程解決簡單的實際問題。
4、第4章幾何圖形初步:本章主要學(xué)習(xí)線段和角有關(guān)的性質(zhì)。本章的重點是區(qū)別直線、射線、線段,角的有關(guān)性質(zhì)和計算;理解互為余角、互為補角的性質(zhì)及應(yīng)用。本章的難點在于線段和角的有關(guān)計算。
二、 教學(xué)目標(biāo)和要求
。ㄒ唬┲R與技能
1、獲得數(shù)學(xué)中的基本理論、概念、原理和規(guī)律等方面的知識,了解并關(guān)注這些知識在生產(chǎn)、生活和社會發(fā)展中的應(yīng)用。
2、學(xué)會將實踐生活中遇到的實際問題轉(zhuǎn)化為數(shù)學(xué)問題,從而通過數(shù)學(xué)問題解決實際問題。體驗幾何定理的探究及其推理過程并學(xué)會在實際問題進(jìn)行應(yīng)用。
3、初步具有數(shù)學(xué)研究操作的基本技能,一定的科學(xué)探究和實踐能力,養(yǎng)成良好的科學(xué)思維習(xí)慣。
。ǘ┻^程與方法
1、采用思考、類比、探究、歸納、得出結(jié)論的方法進(jìn)行教學(xué);
2、發(fā)揮學(xué)生的主體作用,作好探究性活動;
3、密切聯(lián)系實際,激發(fā)學(xué)生的學(xué)習(xí)的積極性,培養(yǎng)學(xué)生的類比、歸納的能力、
(三)情感態(tài)度與價值觀
1、理解人與自然、社會的密切關(guān)系,和諧發(fā)展的主義,提高環(huán)境保護(hù)意識。
2、逐步形成數(shù)學(xué)的'基本觀點和科學(xué)態(tài)度,為確立辯證唯物主義世界觀奠定必在的基礎(chǔ)。
三、 提高教學(xué)質(zhì)量的主要措施
1、認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn),擴充教材內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),認(rèn)真制作考試試試卷,也讓學(xué)生學(xué)會認(rèn)真學(xué)習(xí)。
2、興趣是最好的老師,激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家、數(shù)學(xué)史、介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。
3、引導(dǎo)學(xué)生積極參與知識的構(gòu)建,營造民主、和諧、平等、自主、探究、合作、交流的氛圍,分享快樂的學(xué)習(xí)課堂,讓學(xué)生體會學(xué)習(xí)的快樂,享受學(xué)習(xí)。
4、運用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
5、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補智力上的不足。
6、加強學(xué)生解題速度和準(zhǔn)確度的培養(yǎng)訓(xùn)練,在新授課時,凡是能當(dāng)堂完成的作業(yè),要求學(xué)生比速度和準(zhǔn)確度,誰先完成誰就先交給老師批改,凡是做的全對的依次獲得前十名,以資鼓勵。
7、加強個別輔導(dǎo),加強面批、面改,加強定時作業(yè)的訓(xùn)練。并進(jìn)行作業(yè)展覽,對作業(yè)書寫的好又全部正確的貼在學(xué)習(xí)園地中。
8、積極主動的與其他教師協(xié)同配合,認(rèn)真鉆研教材,搞好集體備課。
初中七年級數(shù)學(xué)教案6
教學(xué)目標(biāo)
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;
2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類
知識重點 正確理解有理數(shù)的概念
教學(xué)過程(師生活動) 設(shè)計理念
探索新知 在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進(jìn)行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.
按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個引入具有開放的特點,學(xué)生樂于參與
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會
練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進(jìn)行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.
思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學(xué)生進(jìn)行判斷。
集合的概念不必深入展開。
創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù) 這個分類可視學(xué)生的程度確定是否有必要教學(xué)。
應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時,分類的`結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結(jié)與作業(yè)
課堂小結(jié) 到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
本課作業(yè)
1, 必做題:教科書第18頁習(xí)題1.2第1題
2, 教師自行準(zhǔn)備
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1,本課在引人了負(fù)數(shù)后對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進(jìn)行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。
初中七年級數(shù)學(xué)教案7
一、教學(xué)內(nèi)容:
人教版教材五年級上冊第五單元多邊形的面積整理與復(fù)習(xí)
二、教學(xué)目標(biāo):
1、使學(xué)生進(jìn)一步熟練掌握已學(xué)圖形各面積公式,能靈活地應(yīng)用多種方法解決生活中簡單的有關(guān)平面圖形面積的實際問題。
2、使學(xué)生感受數(shù)學(xué)方法和思想的重要性及其應(yīng)用的廣泛性。體會數(shù)學(xué)的價值,培養(yǎng)對數(shù)學(xué)學(xué)習(xí)的`熱愛
三、教學(xué)重、難點
重點:使學(xué)生進(jìn)一步熟練掌握已學(xué)圖形各面積公式,能靈活地應(yīng)用多種方法解決生活中簡單的有關(guān)平面圖形面積的實際問題。
難點:引導(dǎo)學(xué)生整理多邊形面積的推導(dǎo)過程,掌握轉(zhuǎn)化的數(shù)學(xué)思想方法,建構(gòu)知識網(wǎng)絡(luò)。
四、教學(xué)準(zhǔn)備:多媒體課件,多邊形紙模
五、教學(xué)步驟與過程
(一)導(dǎo)入復(fù)習(xí)
師:同學(xué)們,我們學(xué)過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節(jié)課我們就來重點整理和復(fù)習(xí)有關(guān)這些多邊形的面積的知識。
板書課題:多邊形面積計算復(fù)習(xí)課
。ǘ┗仡櫿恚(gòu)網(wǎng)絡(luò)
1.復(fù)習(xí)平行四邊形、三角形、梯形面積公式的推導(dǎo)過程。
⑴請大家回憶一下:平行四邊形、三角形、梯形面積的計算公式是怎樣經(jīng)過平移、旋轉(zhuǎn)等方法轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形,從而推導(dǎo)出它們的面積計算公式的。
⑵根據(jù)學(xué)生的回答,出示每個公式的推導(dǎo)過程。
六、課堂練習(xí)
學(xué)生獨立計算。指名學(xué)生板演,集體訂正七、說一說,你學(xué)會了什么?從整理圖中能看出各種圖形之間的關(guān)系嗎?
七,作業(yè)布置:練習(xí)十九
板書設(shè)計
S=ah÷2
S=abS=ah
S=(a+b)h÷2
初中七年級數(shù)學(xué)教案8
一、教材分析:
反比例函數(shù)的圖象與性質(zhì)是對正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時的學(xué)習(xí)是學(xué)生對函數(shù)的圖象與性質(zhì)一個再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對反比例函數(shù)有一個形象和直觀的認(rèn)識。
二、教學(xué)目標(biāo)分析
根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識的同時激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動探索。
因此把教學(xué)目標(biāo)確定為:
1.掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會用描點法畫出反比例函數(shù)的圖象;掌握圖象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。
2.在教學(xué)過程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。
3.通過學(xué)習(xí)培養(yǎng)學(xué)生積極參與和勇于探索的精神。
三、教學(xué)重點難點分析
本堂課的重點是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);
難點則是如何抓住特征準(zhǔn)確畫出反比例函數(shù)的圖象。
為了突出重點、突破難點。我設(shè)計并制作了能動態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。
四、教學(xué)方法
鑒于教材特點及初二學(xué)生的年齡特點、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法和對比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動探究,主動獲取知識。同時注意與學(xué)生已有知識的聯(lián)系,減少學(xué)生對新概念接受的困難,給學(xué)生充分的自主探索時間。通過教師的引導(dǎo),啟發(fā)調(diào)動學(xué)生的積極性,讓學(xué)生在課堂上多活動、多觀察,主動參與到整個教學(xué)活動中來,組織學(xué)生參與“探究——討論——交流——總結(jié)”的學(xué)習(xí)活動過程,同時在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動中啟發(fā)學(xué)生,讓每個學(xué)生動手、動口、動眼、動腦,培養(yǎng)學(xué)生直覺思維能力。
五、學(xué)法指導(dǎo)
本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動手,多觀察,從而可以幫助學(xué)生形成分析、對比、歸納的思想方法。在對比和討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識去主動獲取新知識的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。
六、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)引入——反函數(shù)解析式
練習(xí)1:寫出下列各題的關(guān)系式:
。1)正方形的周長C和它的一邊的長a之間的關(guān)系
。2)運動會的田徑比賽中,運動員小王的平均速度是8米/秒,他所跑過的路程s和所用時間t之間的關(guān)系
。3)矩形的面積為10時,它的長x和寬y之間的關(guān)系
。4)王師傅要生產(chǎn)100個零件,他的工作效率x和工作時間t之間的關(guān)系
問題1:請大家判斷一下,在我們寫出來的這些關(guān)系式中哪些是正比例函數(shù)?
問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運用對比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。
問題2:那么請大家再仔細(xì)觀察一下,其余兩個函數(shù)關(guān)系式有什么共同點嗎?
通過問題2來引出反比例函數(shù)的解析式,請學(xué)生對比正比例函數(shù)的定義來給出反比例函數(shù)的定義,這不僅有助于對舊知識的復(fù)習(xí)和鞏固,同時還可以培養(yǎng)學(xué)生的對比和探究能力。
例題1:已知變量y與x成反比例,且當(dāng)x=2時,y=9
。1)寫出y與x之間的函數(shù)解析式
。2)當(dāng)x=時,求y的值
。3)當(dāng)y=5時,求x的值
通過對例1的學(xué)習(xí)使學(xué)生掌握如何根據(jù)已知條件來求出反比例函數(shù)的解析式。在解題過程中,引導(dǎo)學(xué)生運用在求正比例函數(shù)的解析式時用到的“待定系數(shù)法”,先設(shè)反比例函數(shù)為,再把相應(yīng)的x,y值代入求出k,k值的確定,函數(shù)解析式也就確定了。
課堂練習(xí):已知x與y成反比例,根據(jù)以下條件,求出y與x之間的函數(shù)關(guān)系式
(1)x=2,y=3 (2)x= ,y=
通過此題,對學(xué)生掌握如何根據(jù)已知條件去求反比例函數(shù)的解析式的學(xué)習(xí)情況做一個簡單的反饋。
。ǘ┨骄繉W(xué)習(xí)1——函數(shù)圖象的畫法
問題3:如何畫出正比例函數(shù)的圖象?
通過問題3來復(fù)習(xí)正比例函數(shù)圖象的畫法主要分為列表、描點、連線三個步驟,為學(xué)習(xí)反比例函數(shù)圖像的畫法打下基礎(chǔ)。
問題4:那反比例函數(shù)的圖象應(yīng)該怎樣去畫呢?
在教學(xué)過程中可以引導(dǎo)學(xué)生仿照正比例函數(shù)圖象的.的畫法。
設(shè)想的教學(xué)設(shè)計是:
。1)引導(dǎo)學(xué)生運用在畫正比例函數(shù)圖象中所學(xué)到的方法,分小組討論嘗試,采用列表、描點、連線的方法畫出函數(shù)和的圖象;
。2)老師邊巡視,邊指導(dǎo),用實物投影儀反映一些學(xué)生在函數(shù)圖象中出現(xiàn)的典型錯誤,和學(xué)生一起找出錯誤的地方,分析原因;
(3)隨后老師在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導(dǎo)學(xué)生觀察其圖象特征(雙曲線有兩個分支)。
初二學(xué)生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設(shè)想學(xué)生可能會在下面幾個環(huán)節(jié)中出錯:
。1)在“列表”這一環(huán)節(jié)
在取點時學(xué)生可能會取零,在這里可以引導(dǎo)學(xué)生結(jié)合代數(shù)的方法得出x不能為零。也可能由于在取點時的不恰當(dāng),導(dǎo)致函數(shù)圖象的不完整、不對稱。在這里應(yīng)該要指導(dǎo)學(xué)生在列表時,自變量x的取值可以選取絕對值相等而符號相反的數(shù),相應(yīng)的就得到絕對相等而符號相反的對應(yīng)的函數(shù)值,這樣可以簡化計算的手續(xù),又便于在坐標(biāo)平面內(nèi)找到點。
。2)在“連線”這一環(huán)節(jié)
學(xué)生畫的點與點之間連線可能會有端點,未能用光滑的線條連接。因而在這里要特別要強調(diào)在將所選取的點連結(jié)時,應(yīng)該是“光滑曲線”,為以后學(xué)習(xí)二次函數(shù)的圖像打下基礎(chǔ)。為了使函數(shù)圖象清晰明顯,可以引導(dǎo)學(xué)生注意盡量選取較多的自變量x的值和對應(yīng)的函數(shù)值y,以便在坐標(biāo)平面內(nèi)得到較多的“點”,畫出曲線。
從而引導(dǎo)學(xué)生畫出正確的函數(shù)圖象。
。3)圖象與x軸或y軸相交
在這里我認(rèn)為可以埋下一個伏筆,給學(xué)生留下一個懸念,為后面學(xué)習(xí)函數(shù)的性質(zhì)打下基礎(chǔ)。
需要說明的是:利用多媒體課件學(xué)習(xí)能吸引學(xué)生的注意力,引起學(xué)生進(jìn)一步學(xué)習(xí)的興趣。不過,盡管多媒體的演示既快又準(zhǔn)確,我認(rèn)為在學(xué)生第一次學(xué)畫反比例函數(shù)圖象的過程中,老師還是應(yīng)該在黑板上認(rèn)真示范畫出圖象的每一個步驟,畢竟多媒體還是不能替代我們平時老師在黑板上板書。
鞏固練習(xí):畫出函數(shù)和的圖象
通過鞏固練習(xí),讓學(xué)生再次動手畫出函數(shù)圖象,改正在初次畫圖象時出現(xiàn)在一些問題。老師使用函數(shù)圖象的課件,用屏幕顯示的函數(shù)圖象驗證學(xué)生畫出的函數(shù)圖象的準(zhǔn)確性。
。ㄈ┨骄繉W(xué)習(xí)2——函數(shù)圖象性質(zhì)
1、圖象的分布情況
問題5:請大家回憶一下正比例函數(shù)的分布情況是怎么樣的呢?
提出問題5主要是起到鞏固復(fù)
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?
在這一環(huán)節(jié)中的設(shè)計:
。1)引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時間;
。2)充分運用多媒體的優(yōu)勢進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學(xué)生對比和探究。學(xué)生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;
(3)組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
2、圖象的變化情況
問題7:正比例函數(shù)圖象的變化情況是怎么樣的呢?
提出問題7主要是起到鞏固復(fù)
問題8:那反比例函數(shù)的圖象,是否也具有這樣的性質(zhì)呢?
在這一環(huán)節(jié)的教學(xué)設(shè)計是:
。1)回顧反比例函數(shù)和的圖象,通過實際觀察;
。2)根據(jù)解析式對行取值,比較x在取不同值時函數(shù)值的變化情況;
。3)電腦演示及學(xué)生小組討論,請學(xué)生給出結(jié)論。即這個問題必須分成兩種情況討論即當(dāng)k>0時,自變量x逐漸增大時,y的值則隨著逐漸減小;當(dāng)k<0時,自變量x逐漸增大時,y的值也隨著逐漸增大。
(4)對于學(xué)生做出的結(jié)論,老師應(yīng)該要給予肯定,同時可以提出:有沒有同學(xué)需要補充的呢?若沒有,則可以舉例:當(dāng)k>0,分別比較在第三象限x=-2,第一象限x=2時的y的值的大小,則以上性質(zhì)是否依然成立?學(xué)生的回答應(yīng)該是:不成立。這時老師再請學(xué)生做小結(jié):必須限定在每一個象限內(nèi),才有以上性質(zhì)成立。
問題9:當(dāng)函數(shù)圖象的兩個分支無限延伸時,它與x軸、y軸相交嗎?為什么?
在這個環(huán)節(jié)中,可以結(jié)合剛才學(xué)生所畫的錯誤圖象,引導(dǎo)學(xué)生可以通過代數(shù)的方法分析反比例函數(shù)的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗證了反比例函數(shù)的圖象。當(dāng)兩個分支無限延伸時,可以無限地逼近x軸、y軸,但永遠(yuǎn)不會與兩軸相交。隨即強調(diào)畫圖時要注意準(zhǔn)確性。
。ㄋ模﹤溆盟伎碱}
1、反比例函數(shù)的圖象在第一、三象限,求a的取值范圍
2、
(1)當(dāng)m為何值時,y是x的正比例函數(shù)
。2)當(dāng)m為何值時,y是x的反比例函數(shù)
(五) 小結(jié):
【初中七年級數(shù)學(xué)教案】相關(guān)文章:
初中七年級數(shù)學(xué)教案12-30
初中七年級數(shù)學(xué)教案(通用15篇)03-17
初中數(shù)學(xué)教案11-15
【熱】初中數(shù)學(xué)教案01-12
初中數(shù)學(xué)教案【推薦】01-12
初中數(shù)學(xué)教案【薦】01-12