- 相關(guān)推薦
《3的倍數(shù)的特征》教學案例反思
分類,讓數(shù)學探究更有價值——《3的倍數(shù)的特征》教學案例反思張益趣
《3的倍數(shù)的特征》是人教版義務(wù)教材新課程第八冊的教學內(nèi)容,對這節(jié)課的教學設(shè)計,有從2、5的倍數(shù)的特征中引入的、有讓學生通過擺火柴棒研究的,其中不乏好點子好設(shè)計。但是,大部分老師都要拋出一個問題讓學生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關(guān)系?”總覺得教師對學生的引導過于直接,對于五年級的學生,經(jīng)過這樣的提問,一般都能找到3的倍數(shù)的特征,也能用語言來表述。我認為,我們的關(guān)鍵不但要讓學生找到3的倍數(shù)的特征,更應(yīng)該引導學生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關(guān)系。我考慮,能不能在本節(jié)課中運用分類,讓學生自主探究呢?以下是兩個教學片段:
教學片段一:
讓學生用30秒時間,寫3的倍數(shù),大部分學生都從小到大寫了25個左右
老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務(wù)。
師:請你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時2分鐘。
。ńY(jié)束)學生回答。
生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)
嗎?(學生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
。ㄓ32人和他一樣)
師:你分類的標準是什么?
生2:個位是0——9的都歸為一類,共兩類。
生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。
師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無語)
師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價值的呢?(學生陷入沉思)
以上學生的分類方法,都有不同的標準,從單一分類的角度來看,沒有問題。但是對于尋求3的倍數(shù)的特征,卻沒有意義。大部分學生是從2、5的倍數(shù)的特征中受到啟示,這是學生的經(jīng)驗,卻是一種負遷移。課前,我也想到了,那么是不是就一定要先提醒學生,不要走彎路呢?我認為,負遷移也是一種寶貴的經(jīng)驗,經(jīng)歷過挫折,對知識的理解就會更加深刻,無需刻意回避。
教學片段二:
師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時5分鐘。(陸續(xù)有學生舉手,5分鐘后,共有15位學生舉手,巡視一遍。)
師:誰來介紹自己新的分類方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
師:你的分類標準是什么?
生1:第一類,每個數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個數(shù)數(shù)位上的數(shù)字的和是9;第四類,每個數(shù)數(shù)位上的數(shù)字的和是12;以此類推。
師:誰來幫他“以此類推”?
生2:每個數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。
生3:每個數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。
師:你能用一句話來表達嗎?
生4:每個數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個數(shù)就是3的倍數(shù)。
生5:每個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
師:很厲害。但是,我們需要驗證。判斷老師剛才寫的3的倍數(shù)(前5個)105、111、156、273、300。
生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。
生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。
……
(一個學生根據(jù)規(guī)律回答,其他學生用豎式驗證。)
生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:
第一類:每個數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;
第二類:每個數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;
第三類:每個數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,
這樣的數(shù)是3的倍數(shù)。
師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。
師:厲害!(讓其他學生說了兩個四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個左右的學生能用這樣的方法分析。老師又舉了一個反例。)
師:誰能用幾句話來概括?
生6:一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。
師:真佩服你們!
第二天,有學生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個五位數(shù)2076,學生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個數(shù)就是3的倍數(shù)。
學生的探究能力如此之強,是我沒想到的,學生快速判斷3的倍數(shù)的方法,實際上已經(jīng)綜合了很多的知識,盡管不能很明確地用語言來表達,但是,方法是完全正確的,其實這又是一個學生新的探究的開始。從本節(jié)課中,我有幾點小小的感悟:
一、教師不要害怕學生探究的失敗。學生第一次探究的失敗,完全是正常的,這是他們運用已有的經(jīng)驗,進行探究后的結(jié)果。盡管這種經(jīng)驗的遷移是負作用的,但是從失敗到成功的過程,記憶是深刻的。負遷移在教學中比比皆是,我們不但不能回避,而且要好好利用,要讓學生積累對數(shù)學活動的經(jīng)驗,同時能將“經(jīng)驗材料組織化”。
二、教師要給學生創(chuàng)造探究的機會。學生的探究能力其實是老師意想不到的。最后一位學生對3的倍數(shù)的概括(一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。),盡管實際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個位是0或5的數(shù)是5的倍數(shù);蛟S,這種類比聯(lián)想更容易讓學生理解新的知識,更何況是學生自己探究出來的。其實很多教學內(nèi)容我們都可以讓學生進行探究,關(guān)鍵是教師如何給學生提供一個探究的載體,一種探究的環(huán)境。
三、教師對學過的知識要經(jīng)常地進行整合。新教材的特點是有些知識點分得比較散,所以教師要經(jīng)常把學生學過的知識,在新知中不知不覺地再應(yīng)用,再鞏固。溫故而知新,在復(fù)習與鞏固中,學生會對舊知有更高的認識,更深的理解,也容易排除學生對新知的畏難思想。同時要經(jīng)常地對各種知識進行串聯(lián),編織學生知識的網(wǎng)絡(luò),使學生認識到各種知識之間是相互關(guān)聯(lián)相互作用的,以利于學生解決一些實際問題或綜合性問題。
四、教師要經(jīng)常在教學中滲透一些數(shù)學思想。分類是一種數(shù)學思想,同時也是一種數(shù)學思維的工具。人教版小學數(shù)學第一冊學生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標準,分類的原則,學生在不知不覺中有了感悟。借助分類,有40%的學生找到了3的倍數(shù)的特征,學生完全是在觀察、嘗試、驗證的基礎(chǔ)上探究的,是自主的行為研究。在小學數(shù)學中,滲透了很多數(shù)學思想,如集合、對應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計思想等,在教學中合理地運用這些數(shù)學思想,對學生學習數(shù)學的影響是深遠的,也會讓我們的數(shù)學探究活動更有意義,更有價值。
作者單位:浙江省慈溪市逍林教辦
【《3的倍數(shù)的特征》教學案例反思】相關(guān)文章:
3的倍數(shù)特征教學反思04-07
《3的倍數(shù)的特征》教學反思04-11
《3的倍數(shù)特征》教學反思04-11
倍數(shù)的特征教學反思04-21
《3的倍數(shù)特征》教學反思15篇04-11
25的倍數(shù)特征教學反思10-27
2和5的倍數(shù)的特征教學反思01-28
3的倍數(shù)教學反思08-24