《乘法分配律》教學反思
作為一名優(yōu)秀的人民教師,我們需要很強的教學能力,寫教學反思可以很好的把我們的教學記錄下來,來參考自己需要的教學反思吧!下面是小編收集整理的《乘法分配律》教學反思,歡迎大家分享。
《乘法分配律》教學反思1
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍?/p>
因此我在一開始設(shè)計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計:
一、讓學生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎(chǔ)上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的不同解決方法讓學生體會乘法分配律的'合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學難點
讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設(shè)計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
學生主動去設(shè)計、解決,調(diào)動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
當然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
《乘法分配律》教學反思2
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計本教案的過程中,我一直抱著“以學生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學習任務(wù)、參與共同的學習活動過程中實現(xiàn)不同的人的數(shù)學水平得到不同發(fā)展的教學方式。結(jié)合自己所教案例,對本節(jié)課教學策略進行以下幾點簡要分析:
一、教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創(chuàng)造條件,沒有學生主體的主動參與,不會有學生主體的主動發(fā)展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設(shè)計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。這樣所設(shè)的起點較低,學生比較容易接受。
二、讓學生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。學生能自由發(fā)揮,對所學內(nèi)容很感興趣,氣氛熱烈。到通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學生已有的知識經(jīng)驗的基礎(chǔ)上得到的結(jié)論,是來自于學生已有的數(shù)學知識水平的。
三、總體上我的教學思路是由具體——抽象——具體。在學生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的`過程中,有同學是橫向觀察,也有同學是縱向觀察,老師都予以肯定和表揚,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
四、在學習中大膽放手,把學生放在主動探索知識規(guī)律的主體位置上,讓學生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應用規(guī)律。
在教學過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學生難以完整地總結(jié)出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等。
《乘法分配律》教學反思3
乘法分配律是在學生學習了加法交換律、結(jié)合律和乘法交換律、結(jié)合律并能初步應用這些定律進行一些簡便計算的基礎(chǔ)上進行教學的。乘法分配律是本單元教學的一個重點,也是本單元內(nèi)容的難點,因為乘法分配律不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節(jié)課不僅使學生學會什么是乘法分配律,更要讓學生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學生的分析、推理、抽象、概括的思維能力。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的'?此時,我不是急于告訴學生答案,而是讓學生自己通過舉例加以驗證。學生興趣濃厚,這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。
這堂課由具體到抽象,大多需要學生體驗得來,上下來感覺很好,學生很投入,似乎都掌握了,可在練習時還是發(fā)現(xiàn)了一些問題。如:學生在學習時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認為在練習課時要加以改進。注重從學生的實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習知識。乘法分配律在乘法的運算定律中是一個比較難理解的定律,通過這一節(jié)課的學習,學生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學生就感到很為難了。感覺他們只能意會不能言傳。課本中關(guān)于乘法分配律只有一個求跳繩根數(shù)的例題,但是練習中有關(guān)乘法分配律的運用卻靈活而多變,學生們應用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學生能針對不同的題目能靈活應用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學生印象很深刻,開始還有部分學生只選擇一個數(shù)與8相乘,歸納方法后學生都能正確應用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關(guān)鍵:找準兩個乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個數(shù)字該相加還是該相減,看符號就能確定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關(guān)鍵在于觀察那個數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個數(shù)或者整百數(shù)減去一個數(shù),再應用乘法的分配率進行簡算。有了歸類,學生再見到題目就能依據(jù)數(shù)字或運算符號的特征熟練進行乘法分配律的簡算了。
《乘法分配律》教學反思4
計算教學是小學數(shù)學教學中的重要組成部分,幾乎每一冊的教材中都有計算的教學,而其中的“簡便計算”教學更是計算教學的一部“重頭戲”。學好簡便運算,不僅能降低計算的難度,而且能提高計算的正確率和速度,更重要的是,能使學生將學到的定理、定律、法則、性質(zhì)等運算規(guī)律融會貫通,達到學以致用的目的,從而能培養(yǎng)學生良好的計算習慣。
乘法分配律的教學是在學生學習了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學的。乘法分配律也是學習這幾個定律中的難點。所以,對于乘法分配律的教學,我沒有把重點放在規(guī)律的數(shù)學語言表達上,而是注重引導學生積極主動的參與感悟、體驗、發(fā)現(xiàn)數(shù)學規(guī)律的過程,并且學會用辯證的思維方式思考問題,培養(yǎng)良好的思維習慣,真正落實學生的主體地位。
在教學中,我主要做到了以下幾點:
1、關(guān)注學生已有的知識經(jīng)驗。
興趣是形成良好學習習慣的催化劑。以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學習情境,也就是根據(jù)例題圖,提出問題:買5件夾克衫和5條褲子,一共要付多少元?通過兩種算式的比較,喚醒了學生已有的知識經(jīng)驗,并有意識的蘊含新知識的教學,激發(fā)了學生的學習興趣。
2、引導學生積極主動探究。
配養(yǎng)學生主動探究的學習習慣,是數(shù)學老師在數(shù)學課上的重要任務(wù)。先讓學生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+45)×5=65×5+45×5這個等式,讓學生觀察,初步感知“乘法分配律”。再展開類比:假如我們要選擇另外兩種服裝,買的數(shù)量都相同,一共要付多少元?你還能用兩種方法來求一共要付的錢嗎?讓學生在再次解決問題的過程中進一步感受乘法分配律的存在。然后我引導學生觀察,初步發(fā)現(xiàn)規(guī)律,再引導學生舉例驗證自己的發(fā)現(xiàn),得到更多的等式,繼續(xù)引導學生觀察,直到發(fā)現(xiàn)規(guī)律,同時質(zhì)疑是否有反例,再一致確定規(guī)律的存在,并得出字母公式。
對于乘法分配律的教學,我把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。讓學生在課堂上經(jīng)歷了數(shù)學研究的基本過程:即感知——猜想——驗證——總結(jié)——應用的過程,學生不僅自主發(fā)現(xiàn)了乘法分配律,掌握了乘法分配律的相關(guān)知識,而且掌握了科學探究的方法,數(shù)學思維的能力也得到了發(fā)展。
3、注重合作與交流,多向互動。
學生在學習數(shù)學知識的過程中能學會與人合作交流,這也是一種良好的學習習慣,而倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,每個學生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學生在數(shù)學學習中都得到發(fā)展,我在本課教學中立足通過生生、師生之間多向互動,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學生的.問題意識,又拓寬了學生思維,增強思維的條理性,學生也學得積極主動。
4、練習設(shè)計關(guān)注學生思維能力的發(fā)展。
在練習題型的設(shè)計上,我基本尊重課本上知識的體系,在第4個練習中,三組題目的對比練習主要是鞏固學生對乘法分配律的理解,讓學生通過對比體會計算的簡便。而在計算的過程中會選擇更合理的方法進行計算,這有助于幫助學生提高計算的正確性,有利于學生養(yǎng)成良好的計算習慣。我在設(shè)計教學時,先出示一組題,在學生發(fā)現(xiàn)它們之間的聯(lián)系后,有意讓女生做簡便的一題,讓學生初步感知女生做的題比較簡便,然后再出示第二組,還是有意讓女生做簡便的一題,所以還是女生優(yōu)先,至此我引導學生發(fā)現(xiàn):有時先加再乘比較簡便,有時先乘再加比較簡便,可以根據(jù)實際情況的不同,作出合理的選擇,甚至可以根據(jù)乘法分配律先做適當改寫,使計算更簡便。
這樣設(shè)計,使學生經(jīng)歷了兩輪比賽,對運用乘法分配律可以使計算簡便有了初步的體驗,并且產(chǎn)生了濃厚的學習興趣,對下一課時運用乘法分配律進行簡便計算打下了良好的基礎(chǔ)。最后增加了一個變式題:“5件夾克衫比5條褲子貴多少元?”這是乘法分配律的變式,這在第三課時將會碰到這種題型,所以這里先埋下一個伏筆。由基本題到變式題,有機地聯(lián)系在一起。使學生逐步加深認識,在弄清算理的基礎(chǔ)上,學生能根據(jù)題目的特點,靈活地運用所學知識進行練習。從課堂反饋來看,學生熱情較高,能夠?qū)W以致用。學生通過自己的努力以及和同學的交流合作,思維能力得到了發(fā)展。
教學過程是一個不斷探討的過程,不斷追尋的過程。作為一名數(shù)學老師,希望能在與學生有限的接觸時間內(nèi)幫助學生更快更好地養(yǎng)成良好的數(shù)學學習習慣,使我們的學生終身受益。這是一個值得我永遠追求并為之努力的目標。
《乘法分配律》教學反思5
乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數(shù)學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
一、抓住重點。讓學生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關(guān)鍵應是引導學生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學時,我是按照如上的步驟進行教學的?墒窃谖乙龑W生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關(guān)鍵今天并沒有完成好。
二、考慮學生的學習情況,尊重他們的主觀感受。
三、練習中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74.一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習時也是一樣。
今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學生還能用自己的'語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結(jié)自己的發(fā)現(xiàn),學生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學生理解后我補充77*99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48*3+48*2來計算,卻不能靈活運用所學知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內(nèi)容,但我也由此反思出我教學的不足之處,在例題教學時只關(guān)注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
《乘法分配律》教學反思6
曾經(jīng)真的以為自己是一個很負責任的人:我愛我的學生,我愛我的數(shù)學教學,甚至可以為了我的學生與數(shù)學教學,放棄我個人的休息時間,為的只是我愛的學生能愛上我教的數(shù)學,能把數(shù)學學得很出色。然而為什么總是事與愿違,成效“背叛”了設(shè)想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學期最大的感受,到底問題出在哪里呢?當我回想起教學中一點一滴的瑣事,老師們交流時的經(jīng)驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經(jīng)“背叛”了數(shù)學教學。
“哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的'下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學生,積極舉手發(fā)言,而且一步一步被我“引進”來,突出所謂的教學重點,攻克預設(shè)的教學難點,最后解決相應的問題,“看上去很美”,真的,經(jīng)過我的“引導”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?
可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉(zhuǎn)不過來了,曾經(jīng)我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進行簡便運算》后,經(jīng)過反思與請教,我終于發(fā)現(xiàn)我錯了。
《乘法分配律》教學反思7
乘法分配律是第三章的教學難點也是重點,
乘法分配律教學反思。這節(jié)課的設(shè)計。我是從學生的生活問題入手,利用學生感興趣的買奶茶展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識。通過讓學生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成的過程。回顧整個教學過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:
一、引入生活問題,激趣探究
在教學中,我為學生創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學生感到數(shù)學就是從身邊的生活中來的,激發(fā)學生學習的熱情。首先我創(chuàng)設(shè)情景,提出問題:“一共有多少名學生參加這次植樹活動?”,讓學生根據(jù)提供的`條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、提供學生獨立探究的機會
我要求學生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學生對“乘法分配律”已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較“模糊”的認識。
三、為學生的學習方式的轉(zhuǎn)變創(chuàng)設(shè)了條件
為了讓“改變學生的學習方式,讓學生進行探索性的學習”不是一句空話。在這節(jié)課上,我抓住學生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權(quán)力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
《乘法分配律》教學反思8
《乘法分配律的運用》教學設(shè)計及反思
教學目標
(一)使學生學會用乘法分配律進行簡算,提高計算能力.
(二)培養(yǎng)學生靈活運用乘法運算定律進行計算的習慣.
教學重點和難點
能比較熟練地應用運算定律進行簡算是教學的重點;反向應用乘法分配律是學習的難點. 教學過程設(shè)計
(一)復習準備
1.口算:
(二)學習新課
我們已經(jīng)學過乘法分配律,今天繼續(xù)研究怎樣應用乘法分配律使計算簡便.(板書:乘法分配律的應用)
1.創(chuàng)設(shè)情境,激發(fā)學生學習積極性.
出示102×( ).
請同學任意填上一個兩位數(shù),老師可以迅速說出它的得數(shù),而不用筆算.
2.教學例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數(shù)乘三位數(shù)的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應用運算定律進行簡算?
經(jīng)過討論后,可能出現(xiàn)兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進行計算;一種是把原式改寫成102×(40+3).不要簡單的'否定,可以讓學生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎(chǔ)上引導學生觀察這類題目的特點,以及怎樣應用乘法分配律,從而使學生明確:“兩個數(shù)相乘,把其中一個比較接近整十、整百、整千的數(shù)改寫成一個整十、整百、整千的數(shù)與一個數(shù)的和,再應用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據(jù)是什么.
(3)計算9×37+9×63.
啟發(fā)提問:
、龠@類題目的結(jié)構(gòu)形式是怎樣的?有什么特點?
、诟鶕(jù)乘法分配律,可以把原式改寫成什么形式?這樣算為什么簡便?
在學生充分討論的基礎(chǔ)上,師板書:
提問:這題能簡算嗎?什么地方錯了?應怎樣改?
啟發(fā)學生明確:題里兩個乘式?jīng)]有相同的因數(shù).應該有一個相同的因數(shù),另外兩個因數(shù)加起來應是能湊成整十、整百、整千的數(shù).
2.根據(jù)乘法分配律把相等的式子用“=”連接起來.
討論:2,3兩題為什么不相等?要使等號兩邊式子相等、符合乘法分配律的形式,應該改哪個地方?
在討論基礎(chǔ)上得出:
第2題,如果左邊算式不變,右邊算式應改為35×12+45×12,使兩個加數(shù)分別與同一個數(shù)相乘;如果右邊算式不變,兩個積里有相同的因數(shù)45,把相同的因數(shù)提到括號外面,兩個不同的因數(shù)就是兩個加數(shù),改為(35+12)×45.
第3題右邊兩個積里相同的因數(shù)是4,不同的因數(shù)是11和25,應改為(11+25)×4.因此
要特別注意:括號里的每一個加數(shù)都要同括號外面的數(shù)相乘;反過來,必須是兩個積里有相同的因數(shù),才能把相同的因數(shù)提到括號外面.而三個數(shù)連乘則是可以改變運算順序,它是乘法結(jié)合律.必須要掌握這兩個運算定律的區(qū)別.
(四)作業(yè)
練習十四第5~10題.
教學反思:本節(jié)課從學生實際出發(fā),創(chuàng)設(shè)了具體的生活情境,引導學生開展觀察、猜想、舉例驗證、交流等活動,從激活學生已有的知識經(jīng)驗和探究欲望入手,引導學生主動參與數(shù)學的學習過程,從而發(fā)展學生數(shù)學思維數(shù)學能力,在學習過程中學會學習,學會與人交流合作。新理念還體現(xiàn)不夠,學生的積極性沒有充分調(diào)動起來。
《乘法分配律》教學反思9
《乘法分配律》一直是四則運算定律的一個難點,學生最容易出錯。比如38與99相乘,就容易出現(xiàn)“只把38與100相乘后再減1”的錯誤。還有的學生在計算125×48時,會出現(xiàn)“125×(6×8)=125×6+125×8“這樣的錯誤。究其原因,還是未能真正理解乘法的含義和乘法的運算定律。
在教學中,我也想了很多辦法來解決這些問題,比如讓學生背乘法分配律的'含義,經(jīng)常讓學生做點這樣的易錯題?砂l(fā)現(xiàn)效果不是很明顯,尤其是有幾個孩子,一會就忘記了。后來,我想:還是必須從理解乘法的意義中去學會乘法分配律。于是,我就在輔導這幾名學生時,要求他們說出每一個算式表示的含義,再說一說自己做錯的算式的含義,從而在對比中來發(fā)現(xiàn)、理解自己的錯誤,明白了自己錯誤的原因后,再來思考正確的解題思路,經(jīng)過幾次這樣的訓練,效果好多了。
《乘法分配律》教學反思10
乘法分配律是小學階段學生比較難理解與敘述的運算定律,但的確又非常重要、運用廣泛。在本節(jié)教學過程的設(shè)計上我采用了讓孩子通過“聯(lián)系實際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗證;表示規(guī)律,建構(gòu)模型;概括規(guī)律,完善模型;應用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學任務(wù)。
在教學過程中,以突破乘法分配律的教學重點和難點為切入點,對本節(jié)課知識的學習起到了舉足輕重的作用。根據(jù)自己的教學教訓,在平常的教學中,總是發(fā)現(xiàn)學生在學習完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的現(xiàn)象仔細研究其原因,其實是學生學的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內(nèi)在的數(shù)學意義。因此,我就打破通過觀察 發(fā)現(xiàn) 猜想 驗證 概括的傳統(tǒng)教學思路,除了在外在形式上認識規(guī)律(教材意圖),又從乘法的`意義入手,使學生進一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結(jié)論。讓學生對乘法分配律的理解不再只是停留在外在的“形”,而是又進入“質(zhì)”的深化。這種教學建立在學生認知規(guī)律的基礎(chǔ)之上,實現(xiàn)了有效的建立模型突破了本節(jié)的第一個難點。從課后作業(yè)可以看出,這種教學效果明顯好于以前。
在突破本節(jié)第二個難點:乘法分配律容易跟乘法結(jié)合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學生既懂得乘法結(jié)合律和分配律的區(qū)別,又找到了乘法分配律概念的重點。
在本節(jié)課的練習設(shè)計上,力求有針對性、有坡度的知識延伸,出示擴展型的練習,對分配律的概念加以升華。
這些方面,只是我對自己原來的教學在反思與對比中覺得是對我而言較為進步的一點點。但是,在實際的課堂操作中,整個教學過程也出現(xiàn)了許多不盡人意的地方。
比如:課堂上由于緊強導致只顧自己思路,而忘了對學生的回答或知識的恰當與否做出及時評定。還有,恐怕在規(guī)定時間內(nèi)完不成任務(wù),而把“總結(jié)”與“拓展”放錯了位置;學生參與的積極性沒有預想中那么高,可能與我相對缺乏激勵性語言有關(guān)等等問題。
深入思考,覺得還是自己的業(yè)務(wù)不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:
一、深入鉆研,在挖掘教材上下功夫。
二、多聽課,學習別人長處,多查閱資料學習,提高自己的業(yè)務(wù)水平。
最重要的是更新教學理念,在教學思路的“創(chuàng)新”上狠下功夫,讓學生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標。
【《乘法分配律》教學反思】相關(guān)文章:
乘法分配律教學反思08-24
乘法分配律教學反思03-13
《乘法分配律》教學反思02-15
數(shù)學乘法分配律教學反思03-24
《乘法分配律》教學反思模板10-25
乘法分配律教學反思(精選6篇)04-04
《乘法分配律》教學反思(15篇)03-05
《乘法分配律》教學反思15篇03-05
乘法分配律教學反思15篇03-23
乘法分配律教學反思(15篇)03-26