圓柱的體積的教學(xué)反思
作為一名到崗不久的人民教師,我們需要很強(qiáng)的教學(xué)能力,對(duì)學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,那么教學(xué)反思應(yīng)該怎么寫才合適呢?下面是小編為大家收集的圓柱的體積的教學(xué)反思,希望對(duì)大家有所幫助。
圓柱的體積的教學(xué)反思1
在本節(jié)課的教學(xué)中,教師根據(jù)教學(xué)的需要,充分利用現(xiàn)實(shí)生活中的素材,把教材中有關(guān)圓柱的提積的應(yīng)用所呈現(xiàn)的內(nèi)容變?yōu)楝F(xiàn)實(shí)生活中的問題,變書本知識(shí)為生活中的知識(shí)。
本節(jié)課中教師沒有過多地教學(xué)生,而讓學(xué)生回歸到生活原形中去,應(yīng)用所學(xué)的知識(shí)解決了生活中的實(shí)際問題,使本來很枯燥的'圓柱的體積應(yīng)用的題材生活化,增加了學(xué)生的信息量,提高了學(xué)生體會(huì)數(shù)學(xué)奧秘的積極性。學(xué)生體會(huì)到了生活中處處有數(shù)學(xué),數(shù)學(xué)就在我們身邊,知識(shí)才是我們解決實(shí)際問題的“金鑰匙”。通過尋找這些信息背后的信息,學(xué)生掌握了知識(shí)、形成了技能。同時(shí)也感受到了數(shù)學(xué)應(yīng)用的廣泛性以及數(shù)學(xué)與生活的緊密聯(lián)系。
但在本節(jié)課中也有不足的地方,如①由于中心問題空間較大,具有挑戰(zhàn)性,中下等學(xué)生自主探索有一定的難度;②實(shí)踐中,學(xué)生獨(dú)立思考和小組討論花時(shí)間太多,影響了后面的教學(xué),這都是以后在教學(xué)中應(yīng)注意的問題。
總之,隨著數(shù)學(xué)的發(fā)展,數(shù)學(xué)的應(yīng)用也越來越廣泛。作為教師的我們,應(yīng)該提供給學(xué)生充分的機(jī)會(huì),讓學(xué)生運(yùn)用已學(xué)過的數(shù)學(xué)知識(shí)解決問題,在問題的解決過程中,發(fā)展學(xué)生的思維能力,用數(shù)學(xué)的眼光去感知、去觀察、去應(yīng)用。
圓柱的體積的教學(xué)反思2
對(duì)《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個(gè)性的教學(xué)風(fēng)格。在我看來,盡管是同課異構(gòu),盡管是個(gè)性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持?jǐn)?shù)學(xué)的邏輯嚴(yán)密性,等等。
對(duì)于這節(jié)教材的理解,最嚴(yán)重的分歧可能來自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個(gè):一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負(fù)擔(dān)。事實(shí)上,V=Sh也確實(shí)更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進(jìn)一步描述了它們的不同的S罷了。另一個(gè)原因,是為方便學(xué)生對(duì)公式推導(dǎo)過程的理解。當(dāng)圓柱被分割為有限個(gè)曲面三棱柱并拼為準(zhǔn)長(zhǎng)方體時(shí),半徑r只是接近而并沒有等于長(zhǎng)方體的寬,只有這個(gè)分割被無限化(取極限)時(shí),圓柱的半徑才能與長(zhǎng)方體的寬相等。因此,與其讓學(xué)生去費(fèi)解地或不求甚解地觀察“長(zhǎng)方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來,這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對(duì)新教材理解不到位的緣故。
對(duì)于這節(jié)課的異構(gòu),分歧最大的地方可能是對(duì)探索或計(jì)算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗(yàn)證)展開,其第一課時(shí)的教學(xué)重點(diǎn)無疑應(yīng)當(dāng)放在公式的探索上。至于探索的途徑或方法,我認(rèn)為,主要有兩個(gè):一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長(zhǎng)方體,二是驗(yàn)算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗(yàn)。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長(zhǎng)量,證明體積計(jì)算的正確性。也可以將圓柱體形狀的橡皮泥捏成長(zhǎng)方體形狀,如果能夠在變形的過程中保持高的不變,則可以直接證明所猜想公式的正確性,否則,就要通過計(jì)算來作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗(yàn)證猜想。之所以這樣認(rèn)為,原因有二,一是教材的表述,它說的是:“從‘堆硬幣’來看,用‘底面積乘高’可以計(jì)算出圓柱的體積。”而不是說圓柱的體積就是底面積乘高’。二是如果作為驗(yàn)證方法,在邏輯上就犯了循環(huán)論證的錯(cuò)誤,因?yàn)橛矌疟旧韺?shí)際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗(yàn)證的`。馮老師在教學(xué)中將其處理為“無數(shù)個(gè)圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認(rèn)為,由于“堆硬幣”的目的在于換一個(gè)角度提出猜想,教學(xué)中當(dāng)學(xué)生能夠提出猜想時(shí),“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準(zhǔn)長(zhǎng)方體”之后,可以引導(dǎo)學(xué)生觀察這個(gè)長(zhǎng)方體的“近似性”,并啟發(fā)他們想象當(dāng)?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學(xué)生應(yīng)當(dāng)是可以真正理解的。
圓柱的體積的教學(xué)反思3
本節(jié)課注重了數(shù)學(xué)思想方法和學(xué)習(xí)能力的培養(yǎng)。能力的發(fā)展決不等同于知識(shí)與技能的獲得。能力的形成是一個(gè)緩慢的過程,有其自身的特點(diǎn)和規(guī)律,它不是學(xué)生“懂”了,也不是學(xué)生“會(huì)”了,而是學(xué)生自己“悟”出了道理、規(guī)律和思考方法等。本節(jié)課沿著“猜想-驗(yàn)證”的學(xué)習(xí)流程進(jìn)行,給學(xué)生提供較充分的探索交流的'空間,組織、引導(dǎo)學(xué)生“經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程”,并把數(shù)學(xué)推理能力有機(jī)地融合在這樣的“過程”之中,有力地促使了學(xué)習(xí)改善學(xué)習(xí)方式。本課中學(xué)生“以舊推新”-大膽地進(jìn)行數(shù)學(xué)的猜想;“以新轉(zhuǎn)舊”-積極把新知識(shí)轉(zhuǎn)化為已能解決的舊問題;“新舊交融”-合理地把新知識(shí)納入到原有的認(rèn)識(shí)結(jié)構(gòu)中,教學(xué)活動(dòng)成了學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng)。
整個(gè)教學(xué)過程是在“猜想-驗(yàn)證”的過程中進(jìn)行的,是讓學(xué)生在和已有知識(shí)經(jīng)驗(yàn)中體驗(yàn)和理解數(shù)學(xué),學(xué)生學(xué)會(huì)了思考、學(xué)會(huì)了解決問題的策略,學(xué)出了自信。
圓柱的體積的教學(xué)反思4
本節(jié)課教學(xué)設(shè)計(jì)從回憶舊知入手,通過猜測(cè)、觀察、交流、驗(yàn)證、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生經(jīng)歷探索新知的全過程,鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流,讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)圓柱體積計(jì)算公式,鼓勵(lì)解決問題策略的多樣化,讓學(xué)生的思維得到發(fā)展,創(chuàng)新精神、實(shí)踐能力得到提高。
新授部分,經(jīng)歷了問題引入、猜測(cè)、自主探索、合作交流、驗(yàn)證歸納五個(gè)環(huán)節(jié),環(huán)環(huán)相扣,步步深入。合作交流這個(gè)環(huán)節(jié)給了學(xué)生充足的時(shí)間去探索、交流,通過把圓柱切拼成近似的長(zhǎng)方體,再對(duì)比二者的體積、底面積、高之間的聯(lián)系,推導(dǎo)出了圓柱的體積計(jì)算公式,從而得出圓柱和長(zhǎng)方體有著相同的體積計(jì)算公式,然后要求學(xué)生回顧一下我們是怎樣得到“圓柱體的體積=底面積×高”這個(gè)結(jié)論的。經(jīng)歷了公式的推導(dǎo)過程,也讓學(xué)生體驗(yàn)了數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受到數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性。
課堂上,我將引導(dǎo)啟發(fā)、自主探究與合作交流等多種教學(xué)方式相結(jié)合,借助于多媒體課件化靜為動(dòng),把教師說不清道不明,學(xué)生不易理解的圓柱切拼成近似長(zhǎng)方體的轉(zhuǎn)化過程一目了然地展現(xiàn)在學(xué)生面前。教學(xué)設(shè)計(jì)充分體現(xiàn)了“以學(xué)生為中心”的思想,真正方便了學(xué)生學(xué)習(xí)。做到根據(jù)教學(xué)內(nèi)容的實(shí)際需要,充分發(fā)揮多媒體技術(shù)的優(yōu)勢(shì),突出教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),豐富了教學(xué)內(nèi)容,精彩了課堂,激發(fā)了學(xué)生的學(xué)習(xí)興趣。
學(xué)生在數(shù)學(xué)課堂上建立起新概念、習(xí)得規(guī)律之后,必須完成一定數(shù)量的數(shù)學(xué)練習(xí)題,才能鞏固所學(xué)知識(shí)。本節(jié)課,我充分挖掘習(xí)題的`價(jià)值,在鞏固中拓展,讓學(xué)生的思維不停留于某一固定的模式中,而能靈活應(yīng)變,變有限為無限,讓不同層次學(xué)生的思維水平在原有水平基礎(chǔ)上都得以提升。
不足之處:課件代替了板書(由于課前班班通出現(xiàn)小小故障,我在打開課件時(shí)有點(diǎn)著急,課件出示錯(cuò)誤,又耽誤了時(shí)間,沒有在黑板上板書課題)。時(shí)間分配不夠合理,練習(xí)時(shí)板演學(xué)生太少(合作交流環(huán)節(jié)給了學(xué)生大量的時(shí)間去探索、交流,在練習(xí)時(shí)已經(jīng)沒有足夠的時(shí)間了,就讓一個(gè)學(xué)生板演了,致使后邊的拓展提高沒來得及進(jìn)行,就進(jìn)行檢測(cè)了)。教師的評(píng)價(jià)方式單一。
改進(jìn)措施:每節(jié)課要準(zhǔn)備充分,提前候課,避免出現(xiàn)差錯(cuò),耽誤時(shí)間,練習(xí)量不夠或完不成任務(wù)。課堂上要多關(guān)注中等偏下的學(xué)生,老師的評(píng)價(jià)機(jī)制要多樣,讓他們學(xué)會(huì)傾聽,樂于學(xué)習(xí),多給他們展示交流的機(jī)會(huì)。課堂上課件只起一個(gè)輔助作用,不能喧賓奪主。
今后還要一如繼往地做好日教研,上完課及時(shí)與本組成員溝通、交流,讓課堂教學(xué)更高效。
圓柱的體積的教學(xué)反思5
“圓柱的體積”一課是在學(xué)生已經(jīng)學(xué)習(xí)了“正方體的體積”和“長(zhǎng)方體的體積”“圓柱的認(rèn)識(shí)”“圓柱的表面積”等相關(guān)知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。同時(shí)又是為學(xué)生今后進(jìn)一步學(xué)習(xí)其他立體圖形的有關(guān)知識(shí)做好充分準(zhǔn)備的一堂課。結(jié)合本課的教學(xué)實(shí)際情況,反思如下:
一、創(chuàng)設(shè)問題情境。
上課開始提出“我們認(rèn)識(shí)了哪些立體圖形?它們的體積怎樣求?現(xiàn)在我想知道這塊橡皮泥的體積或這個(gè)瓶子的容積,該怎么辦?”學(xué)生提出“把橡皮泥捏成長(zhǎng)方體的形狀,把瓶子里裝滿水,再倒入一個(gè)長(zhǎng)方體的盒子里,就可以求出來瓶子的容積了”。這樣不斷地引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,探索和解決實(shí)際問題,并制造認(rèn)知沖突,形成了“任務(wù)驅(qū)動(dòng)”的探究氛圍。
二、知識(shí)過程,讓學(xué)生在參與中學(xué)習(xí)。
首先讓學(xué)生大膽猜想,圓柱體的體積可能等于什么?大部分學(xué)生猜測(cè)圓柱體的體積可能等于底面積×高。然后小組同學(xué)想辦法加以驗(yàn)證。有的組將圓柱體橡皮泥捏成長(zhǎng)方體,計(jì)算出了橡皮泥的體積。有的組通過圓的面積公式推導(dǎo),將圓柱體分成若干等分后再拼成長(zhǎng)方體。通過計(jì)算長(zhǎng)方體的體積推導(dǎo)出圓柱體的體積。然后讓學(xué)生比較圓柱體的.底面積、高與長(zhǎng)方體的底面積、高之間的關(guān)系,使學(xué)生確信自己的猜想是正確的。
三、在討論交流中學(xué)。
通過實(shí)驗(yàn)驗(yàn)證之后,讓學(xué)生看書自學(xué),按照書中介紹的方法自己推導(dǎo)出圓柱體的體積公式。小組進(jìn)行如下討論:
。ǎ保┢闯傻慕崎L(zhǎng)方體體積與原來的圓柱體積有什么關(guān)系?
。ǎ玻┢闯傻慕崎L(zhǎng)方體的底面積與原來的圓柱底面積有什么關(guān)系?
。ǎ常┢闯傻慕崎L(zhǎng)方體的高與原來的圓柱高有什么關(guān)系?這樣不僅為學(xué)生提供動(dòng)手操作、觀察以及交流討論的平臺(tái),而且還發(fā)揮了學(xué)生的主動(dòng)性。
在這一環(huán)節(jié)中我處理的有點(diǎn)倉促,沒有給所有學(xué)生充分的思考和探究的時(shí)間。如能抓住這一契機(jī)讓全體學(xué)生都去操作、思考、探究可能會(huì)更有利于學(xué)生理解和掌握公式。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,要根據(jù)教學(xué)要求,優(yōu)化課堂教學(xué)的需要對(duì)教材進(jìn)行適當(dāng)?shù)募庸ぬ幚怼?/p>
圓柱的體積的教學(xué)反思6
優(yōu)點(diǎn):
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的'過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。這樣設(shè)計(jì)我覺得能突破難點(diǎn),課堂效果很好。
不足:
由于學(xué)生的學(xué)具有限,在很大程度上阻礙了學(xué)生主動(dòng)探究的欲望和動(dòng)手操作的能力,加上本人能力有限,語言組織能力不是很好,使課堂氣氛不是那么活躍,課堂顯得有些壓抑
再教設(shè)想:
在課的設(shè)計(jì)上以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,在學(xué)生動(dòng)手實(shí)踐、交流討論和思考的時(shí)間上教師應(yīng)合理把握。
圓柱的體積的教學(xué)反思7
學(xué)生進(jìn)行圓柱體積公式探究時(shí),由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了個(gè)別學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,從而推導(dǎo)出圓柱體積的`計(jì)算公式。
非常遺憾的是學(xué)生基本沒有親身參與操作,。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長(zhǎng)方體 ,展示切拼過程.學(xué)生雖然沒有親身經(jīng)歷,但也一目了然.
圓柱的體積的教學(xué)反思8
這節(jié)課我采用新課程的教學(xué)理念,合理安排教學(xué)環(huán)節(jié),激發(fā)學(xué)生的思維,組織學(xué)生參與操作,通過觀察、交流,感悟知識(shí)間的聯(lián)系,從而獲取新知。我深知教學(xué)無止境,沒有最好只有更好,我要從成功中找不足。
首先,復(fù)習(xí)內(nèi)容簡(jiǎn)單明了,以舊引新。復(fù)習(xí)的知識(shí)點(diǎn)是對(duì)舊知的回顧,要求學(xué)生寫出長(zhǎng)方體和正方體的體積計(jì)算公式,在對(duì)預(yù)習(xí)作業(yè)交流時(shí)我發(fā)現(xiàn)學(xué)生能比較順利和準(zhǔn)確的回答,這為新課的教學(xué)活動(dòng)不僅起了良好的開端,更重要的是為學(xué)生在課堂上再進(jìn)一步地、更深入地探索新知削弱了阻力,減輕了負(fù)擔(dān)。
其次,引導(dǎo)學(xué)生大膽交流猜想和探索驗(yàn)證。我利用課件把等底等高的長(zhǎng)方體、正方體和圓柱體圖形和問題呈現(xiàn)出來,讓學(xué)生觀察圖形思考問題并組織討論。在對(duì)如何驗(yàn)證讓學(xué)生作為重點(diǎn)交流。意圖是先讓學(xué)生明確兩點(diǎn)。第一點(diǎn)圓可以轉(zhuǎn)化成長(zhǎng)方形,圓柱可以轉(zhuǎn)化長(zhǎng)方體;第二點(diǎn)把圓柱的底面經(jīng)過圓心16等份,切開后可以拼成一個(gè)近似的長(zhǎng)方體。由于學(xué)生課前做了充分的預(yù)習(xí)和課堂開始階段預(yù)習(xí)作業(yè)的交流,學(xué)生對(duì)如何驗(yàn)證的思維已經(jīng)初步形成。讓學(xué)生再次交流和匯報(bào),我發(fā)現(xiàn)學(xué)生都了解和掌握。此時(shí)我指名學(xué)生到講臺(tái)前利用教具說出操作方法,并進(jìn)行操作,讓全班同學(xué)觀察操作過程。通過學(xué)生的操作、觀察,學(xué)生得到體驗(yàn)和感悟,發(fā)現(xiàn)圓柱可以轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體。
再次,課件展示、構(gòu)建新知。讓學(xué)生觀看課件:是把圓柱的底面平均分成32份切開后拼成的'長(zhǎng)方體。我抓住時(shí)機(jī)問學(xué)生:如果把圓柱的底面平均分的份數(shù)越多,切開后拼成的物體的形狀就有什么變化?學(xué)生明確回答拼成的物體越來越接近長(zhǎng)方體。接著我把圓柱體和轉(zhuǎn)化后的長(zhǎng)方體圖象同時(shí)顯示出來,要求學(xué)生說出長(zhǎng)方體的底面積和高與圓柱的底面積和高有什么關(guān)系,學(xué)生能清楚地表達(dá)出來。推導(dǎo)圓柱的體積計(jì)算公式的過程分為猜想、操作、發(fā)現(xiàn)、結(jié)論四個(gè)階段,學(xué)生經(jīng)歷這些教學(xué)活動(dòng),體驗(yàn)和感悟了轉(zhuǎn)化的作用和價(jià)值,弄懂得了圓柱的體積計(jì)算公式的來龍去脈。
最后,分層練習(xí),發(fā)散思維。在獲得圓柱的體積計(jì)算公式的成果之后,為了培養(yǎng)學(xué)生解題的靈活性,拓展知識(shí),培養(yǎng)學(xué)生發(fā)散思維的能力,注意分層練習(xí),我安排了練習(xí)題是有層次和梯度的。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面周長(zhǎng)和高,怎樣求圓柱體積。解決生活中的問題中,我設(shè)計(jì)的習(xí)題激發(fā)學(xué)生思考的欲望,壓路機(jī)、鉛筆、柱子這些圓柱體,需要實(shí)際測(cè)量什么,才能進(jìn)一步求得圓柱的體積,孩子們大膽思考,結(jié)合生活實(shí)際找到了答案,體會(huì)到“生活中的數(shù)學(xué)”。在練習(xí)時(shí)我不斷巡視關(guān)注學(xué)生練習(xí)情況,鼓勵(lì)學(xué)生大膽展示,交流各自的想法和做法。對(duì)出現(xiàn)的錯(cuò)誤作為教師指導(dǎo)的課程資源,強(qiáng)化孩子對(duì)圓柱體積知識(shí)點(diǎn)的深化和理解。
圓柱的體積的教學(xué)反思9
圓柱的體積計(jì)算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的`推導(dǎo)過程,以及長(zhǎng)方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長(zhǎng)方體、正方體、圓柱,學(xué)生通過觀察,作出猜測(cè):
。1)圓柱的體積等于長(zhǎng)方體和正方體的體積。
。2)圓柱的體積也等于底面積乘高。猜測(cè)是否準(zhǔn)確呢?
點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗(yàn)證圓柱轉(zhuǎn)化成長(zhǎng)方體過程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長(zhǎng)方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長(zhǎng)方體的長(zhǎng)是圓柱的底面周長(zhǎng)的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長(zhǎng)的一半×底面半徑×高。首先我對(duì)這種方法加以肯定,然后利用圓的周長(zhǎng)和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長(zhǎng)方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
圓柱的體積的教學(xué)反思10
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了圓柱的體積計(jì)算公式的基礎(chǔ)上開展的,大多數(shù)學(xué)庭作業(yè)已經(jīng)能夠熟練運(yùn)用體積公式計(jì)算直觀圓柱形容器的容積,這對(duì)本節(jié)課的后續(xù)計(jì)算莫定了良好基礎(chǔ)。但是對(duì)生通過上節(jié)課的課堂練習(xí)以及家于例7中非直觀圓柱形容器的容積計(jì)算,很多同學(xué)一開始無處著手。通過課件將瓶子正置及倒置的情況分開討論,然后逐步引導(dǎo),從而最終使學(xué)生明白該瓶子的容積在數(shù)值上就相當(dāng)于兩個(gè)小圓柱的體積。緊接著,兩個(gè)及時(shí)的模仿練習(xí)再次讓大家感受到解決此類問題的關(guān)鍵就在于“轉(zhuǎn)換”和“構(gòu)建”,即:將無法直接計(jì)算體積的物體轉(zhuǎn)換成可計(jì)算體積的物體的體積;又或者將原不規(guī)則的物體換個(gè)角度或方向,從而便于我構(gòu)建新的'可計(jì)算體積的物體,進(jìn)而得出解題思路和問題答案。
對(duì)于“轉(zhuǎn)化”這種數(shù)學(xué)思想的培養(yǎng),在教學(xué)過程中多進(jìn)行一些引導(dǎo)性提問,給于學(xué)生足夠的思考討論時(shí)間,盡量讓學(xué)生自己分析出思路,享受到成功的快樂,從而增強(qiáng)學(xué)生的自信心,提高學(xué)習(xí)興趣。
圓柱的體積的教學(xué)反思11
本節(jié)課的設(shè)計(jì)思路的優(yōu)點(diǎn)在于學(xué)習(xí)自主化。首先,我通過復(fù)習(xí)導(dǎo)入,揭示了本節(jié)課的學(xué)習(xí)主題,激發(fā)了學(xué)生的探索學(xué)習(xí)熱情。
然后再以求圓柱的體積為主線,引導(dǎo)學(xué)生在課件展示中探索數(shù)學(xué)問題,認(rèn)識(shí)到知識(shí)間的緊密聯(lián)系。學(xué)習(xí)自主化,指的是在整個(gè)教學(xué)過程中,我注重了學(xué)生的自主學(xué)習(xí)、獨(dú)立思考,使學(xué)生通過“說一說”“辨一辨”等途徑來突破教學(xué)的重、難點(diǎn),使學(xué)生深刻理解圓柱體積計(jì)算公式的推導(dǎo)過程,并通過習(xí)題幫助學(xué)生記憶圓柱體積的計(jì)算公式和運(yùn)用圓柱體積計(jì)算公式來解決一些生活實(shí)際問題。
但是,在具體的教學(xué)過程中,本課時(shí)的教學(xué)設(shè)計(jì)依然存在一些問題。比如:在凸現(xiàn)學(xué)習(xí)自主化這一學(xué)習(xí)過程時(shí),我們應(yīng)給予學(xué)生更多的時(shí)間和空間來思考,使學(xué)生在發(fā)現(xiàn)圓柱體積計(jì)算方法的同時(shí)真正提高學(xué)生自主學(xué)習(xí)的'能力,因?yàn)閷W(xué)生只有在發(fā)現(xiàn)問題和解決問題這一矛盾的相互碰撞中才能深刻理解知識(shí)、掌握知識(shí)。
圓柱的體積的教學(xué)反思12
一、讓學(xué)生在現(xiàn)實(shí)情境中體驗(yàn)和理解數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我從生活情境入手,先復(fù)習(xí)了長(zhǎng)方體、正方體體積的計(jì)算,然后順勢(shì)提出“如何計(jì)算圓柱體的體積”這一全課的核心問題,從而引發(fā)學(xué)生的猜測(cè)、操作、交流等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷了“做數(shù)學(xué)”的過程。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。在體驗(yàn)“生活數(shù)學(xué)”的過程中,學(xué)生理解與感受到了數(shù)學(xué)的魅力,獲得了個(gè)人生存與發(fā)展的必需的數(shù)學(xué)。
二、鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的'數(shù)學(xué)學(xué)習(xí)的主要方式。教師要改變以例題、示范、講解為主的教學(xué)方式,引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)之中。在本節(jié)課中,我讓全班學(xué)生以小組為單位圍坐在一起,為他們提供自主探究的空間,同時(shí)盡量延長(zhǎng)小組交流的時(shí)間,試圖把學(xué)習(xí)的時(shí)間、空間還給學(xué)生,讓其進(jìn)行自主探究、合作交流。數(shù)學(xué)的價(jià)值不在技能而在思想,在探究的過程中,我不是安排了一整套指令讓學(xué)生進(jìn)行程序操作,獲得一點(diǎn)基本技能,而是提供了相關(guān)知識(shí)背景、實(shí)驗(yàn)素材,使用了“對(duì)我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎樣想的?”等這樣一些指向探索的話語鼓勵(lì)學(xué)生獨(dú)立思考、動(dòng)手操作、合作探究,讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)自己的數(shù)學(xué),而不是去模仿復(fù)制別人的數(shù)學(xué)。因?yàn)槲蚁耄鹤约旱,才是有價(jià)值的。
三、鼓勵(lì)解決問題策略的多樣化
《課程標(biāo)準(zhǔn)》指出:鼓勵(lì)解決問題策略的多樣化,是因?yàn)槭┙,促進(jìn)每一個(gè)學(xué)生充分發(fā)展的有效途徑。本節(jié)課在自主探究階段,我鼓勵(lì)學(xué)生用多種方法把圓柱體轉(zhuǎn)化成長(zhǎng)方體。在鞏固發(fā)展階段,我設(shè)計(jì)了兩道開放性的習(xí)題,其中計(jì)算圓柱體積木體積,可以從測(cè)量圓柱的底面半徑、直徑、周長(zhǎng)等不同角度求解;計(jì)算旋轉(zhuǎn)直尺所形成的圓柱體積一題,旋轉(zhuǎn)軸不同得到的圓柱體是完全不一樣的,這體現(xiàn)了解題方法的多樣性。這樣安排從表面上看,似乎只是學(xué)生的空間觀念、基本技能得到了培養(yǎng);但深層次地分析,可以發(fā)現(xiàn)學(xué)生的思維得到了發(fā)展,創(chuàng)新精神、實(shí)踐能力得到了提高。這些具有多樣化解決策略的開放性的問題能盡可能地保證每個(gè)學(xué)生在掌握數(shù)學(xué)基本技能的前提下,不同的人在數(shù)學(xué)上得到不同的發(fā)展。
圓柱的體積的教學(xué)反思13
圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過對(duì)圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探究。在圓的體積公式推導(dǎo)過程中,給予學(xué)生足夠的時(shí)間和空間,激發(fā)學(xué)生的探究的欲望,培養(yǎng)學(xué)生的空間想象力。我把圓柱體拼成一個(gè)長(zhǎng)方體,就是把一個(gè)新圖形轉(zhuǎn)換成一個(gè)我們學(xué)習(xí)過的圖形,通過討論,爭(zhēng)鳴從而得出比較深層的數(shù)學(xué)知識(shí),這種思維的火花,我們老師應(yīng)及時(shí)捕捉,讓它開得絢麗多彩,從而讓學(xué)生的個(gè)性能得到充分的培養(yǎng)。讓學(xué)生老師這樣才能寓教于樂,從而達(dá)到了事半功倍的效果。在教此內(nèi)容時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:
一、展示知識(shí)的發(fā)生過程,讓學(xué)生在參與中學(xué)習(xí)。
現(xiàn)代教育認(rèn)為課堂教學(xué)首先不是知識(shí)的傳遞過程,而是學(xué)生的發(fā)展過程;首先不是教師的教授過程,而是學(xué)生的學(xué)習(xí)過程;首先不是教師教會(huì)的過程,而是學(xué)生學(xué)會(huì)的過程。展開部分,首先讓學(xué)生大膽猜想,圓柱體的體積可能等于什么?大部分學(xué)生猜測(cè)圓柱體的體積可能等于底面積×高。在驗(yàn)證圓柱的體積是否與圓柱的底面積和高有關(guān)的過程中,我讓兩名學(xué)生到臺(tái)上演示,學(xué)生興致很高,都想到臺(tái)上進(jìn)行操作,被選出進(jìn)行演示的學(xué)生非常認(rèn)真地進(jìn)行操作,而其他學(xué)生也是非常認(rèn)真的進(jìn)行觀察。因此推導(dǎo)得出圓柱體積公式時(shí),學(xué)生感到非常好懂,也學(xué)得很輕松。
二、在討論交流中學(xué)習(xí)。
通過實(shí)驗(yàn)驗(yàn)證之后,讓學(xué)生看課件后,小小組進(jìn)行了如下討論:
(1)拼成的近似長(zhǎng)方體體積與原來的圓柱體積有什么關(guān)系?
。ǎ玻┢闯傻慕崎L(zhǎng)方體的底面積與原來的圓柱底面積有什么關(guān)系?
。ǎ常┢闯傻慕崎L(zhǎng)方體的高與原來的.圓柱高有什么關(guān)系?這樣不僅為學(xué)生提供動(dòng)手操作、觀察以及交流討論的平臺(tái),而且有利于學(xué)生克服膽怯的心理障礙,大膽參與,發(fā)揮學(xué)生的主動(dòng)性,同時(shí)還能增強(qiáng)
團(tuán)隊(duì)協(xié)作意識(shí)。在這一環(huán)節(jié)中,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:學(xué)生親身體驗(yàn)的感受不夠,因?yàn)閳A柱體積演示器只有一套,所以,只能是個(gè)別學(xué)生進(jìn)行操作,大部分學(xué)生只能遠(yuǎn)距離觀察。有些學(xué)生因看得不清楚而觀察、思考得不正確。如果條件允許,演示器多一些,能讓學(xué)生人人都進(jìn)行操作,我想學(xué)生的參與率、學(xué)生動(dòng)手能力、學(xué)生的觀察與思考、教學(xué)效果都會(huì)更好。
圓柱的體積的教學(xué)反思14
圓柱的體積一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。
教學(xué)中學(xué)生存在的問題是:
1、學(xué)生對(duì)推導(dǎo)過程理解有困難,不深入;
2、在計(jì)算的過程中,單位名稱用錯(cuò),體積單位用面積單位。
3、對(duì)于書中所給的.立體圖形,認(rèn)識(shí)不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯(cuò)。圓柱的高也可以叫做圓柱的長(zhǎng)(個(gè)別學(xué)生不清楚)
突破難點(diǎn)的方法:
1、為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長(zhǎng)方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。
3、注意引導(dǎo)學(xué)生參與到探索知識(shí)的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動(dòng)的學(xué)習(xí)方式,關(guān)注學(xué)生的實(shí)踐活動(dòng)和直接經(jīng)驗(yàn),“通過自己的活動(dòng)”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動(dòng)是數(shù)學(xué)活動(dòng)的重要組成部分,也是學(xué)生學(xué)習(xí)活動(dòng)的重要方式。
圓柱的體積的教學(xué)反思15
今天教學(xué)“圓柱體的體積”,接受昨天學(xué)生提出的只學(xué)不會(huì)的學(xué)習(xí)方式,在黑板上分了兩個(gè)區(qū)域,一個(gè)復(fù)習(xí)區(qū)域:長(zhǎng)方體的體積怎樣計(jì)算?圓的面積計(jì)算公式是怎樣推導(dǎo)出來的呢?重點(diǎn)研究區(qū)域:圓柱體的體積怎樣計(jì)算?
面對(duì)復(fù)習(xí)的問題,學(xué)生回答的很好,長(zhǎng)方體的體積=長(zhǎng)×寬×高,當(dāng)我指著長(zhǎng)方體的底面時(shí),學(xué)生就說,長(zhǎng)方體的體積=底面積×高。學(xué)生對(duì)于圓的'面積計(jì)算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對(duì)本課的重點(diǎn)解決問題,我滿懷信心(兩個(gè)復(fù)習(xí)問題的鋪墊,學(xué)生會(huì)首先想起來把圓柱體按照?qǐng)A的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨(dú)立思考,怎樣計(jì)算圓柱體的體積?正當(dāng)大家苦思冥想的時(shí)候,一只手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個(gè)舉手,把別人的風(fēng)頭都給搶去了,他是一個(gè)愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是壓一壓他的積極性。給大家留一點(diǎn)思考的時(shí)間,等一會(huì)再說你的方法,誰知道這個(gè)積極分子不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺(tái)上了,(哎,讓我怎么評(píng)價(jià)他呢,耐不住性子啊,再穩(wěn)重一些多好。浚何沂沁@樣想的,這是一個(gè)圓柱體的生日蛋糕,我想把它橫著切成一個(gè)個(gè)圓片,分給你們吃。霎時(shí)間,下面的同學(xué)都笑了,過了一會(huì),一個(gè)學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系啊?有啊,這個(gè)圓柱體蛋糕的體積就是每一個(gè)圓片的面積乘上圓片的個(gè)數(shù)。這樣解釋完,下面的學(xué)生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時(shí)候了:你給大家解釋一下,圓片是什么?圓片的個(gè)數(shù)又是什么?圓片就是圓柱的底面積,圓片的個(gè)數(shù)就是圓柱的高。
這種推導(dǎo)圓柱體體積的計(jì)算方法,是出乎我意料之外的,因?yàn)椋鉀Q問題前,已經(jīng)復(fù)習(xí)了長(zhǎng)方體體積計(jì)算方法與圓的面積的推導(dǎo)方法,都是為把圓柱體進(jìn)行等分轉(zhuǎn)化成長(zhǎng)方體體積來推導(dǎo)做鋪墊的。誰曾向,這種用堆的過程來說明“底面積×高”計(jì)算圓柱體體積的道理,實(shí)際是積分思想,這是要到中學(xué)才學(xué)習(xí)的,學(xué)生不好理解的,竟然跑到預(yù)想方法之前了。真是計(jì)劃不如變化快啊。課堂上的精彩總是不期而至啊。試想,如果,剛開始他舉手,我就像以往一樣”壓一壓他,讓他和其他學(xué)生同步思考,說不定,這個(gè)想法在他腦海里轉(zhuǎn)瞬即逝,那么這個(gè)精彩的火花就不會(huì)在課堂上呈現(xiàn)。
由此感悟到,課堂上,要給學(xué)生即興發(fā)言的機(jī)會(huì),及時(shí)的捕捉學(xué)生的思維靈感,精彩就會(huì)不期而至!秷A柱體的體積》這一課我學(xué)到了很多東西。
【圓柱的體積的教學(xué)反思】相關(guān)文章:
圓柱的體積教學(xué)反思04-10
《圓柱的體積》教學(xué)反思05-08
圓柱的體積教學(xué)反思07-07
圓柱體積教學(xué)反思04-10
《圓柱的體積》教學(xué)反思15篇01-29
圓柱的體積教學(xué)反思15篇02-18
《圓柱體體積》教學(xué)反思02-19
圓柱的體積教學(xué)反思(15篇)03-08