亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>心得體會(huì)>考研數(shù)學(xué)高分心得體會(huì)

            考研數(shù)學(xué)高分心得體會(huì)

            時(shí)間:2024-11-30 11:13:11 心得體會(huì) 我要投稿
            • 相關(guān)推薦

            考研數(shù)學(xué)高分心得體會(huì)

              當(dāng)我們對(duì)人生或者事物有了新的思考時(shí),好好地寫(xiě)一份心得體會(huì),這樣可以不斷更新自己的想法。那么要如何寫(xiě)呢?下面是小編為大家整理的考研數(shù)學(xué)高分心得體會(huì) ,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

            考研數(shù)學(xué)高分心得體會(huì)

            考研數(shù)學(xué)高分心得體會(huì) 1

              高數(shù)的基礎(chǔ)應(yīng)該著重放在極限、導(dǎo)數(shù)、不定積分這三方面,后面當(dāng)然還有定積分、一元微積分的應(yīng)用,還有中值定理、多元函數(shù)、微分、線面積分等等內(nèi)容。此外,數(shù)學(xué)要考的另一部分是簡(jiǎn)單的分析綜合能力和解應(yīng)用題的能力。近幾年,高數(shù)中的一些考題很少有單純考一個(gè)知識(shí)點(diǎn)的,一般都是多個(gè)知識(shí)點(diǎn)的綜合。解應(yīng)用題要求的知識(shí)面比較廣,包括數(shù)學(xué)的知識(shí)比較要扎實(shí),還有幾何、物理、化學(xué)、力學(xué)等等這些好多知識(shí)。當(dāng)然它主要考的就是數(shù)學(xué)在幾何中的應(yīng)用,在力學(xué)中的應(yīng)用,在物理中的吸引力、電力做功等等這些方面。數(shù)學(xué)要考的第四個(gè)方面就是運(yùn)算的熟練程度,換句話說(shuō)就是解題的速度。如果能夠圍繞著這幾個(gè)方面進(jìn)行有針對(duì)性地復(fù)習(xí),考研取得高分就不會(huì)是難事了。

              那么,同學(xué)們?cè)诰唧w的復(fù)習(xí)過(guò)程中要怎么做呢 新東方在線在此給20xx級(jí)的考生們提供以下復(fù)習(xí)技巧:

              數(shù)學(xué)復(fù)習(xí)是要保證熟練度的',平時(shí)應(yīng)該多訓(xùn)練,應(yīng)該一抓到底,經(jīng)常練習(xí),一天至少保證三個(gè)小時(shí)。把一些基本概念、定理、公式復(fù)習(xí)好,牢牢地記住。同時(shí)數(shù)學(xué)還是一種基本技能的訓(xùn)練,像騎自行車一樣。盡管你原來(lái)騎得非常好,但是長(zhǎng)時(shí)間不騎,再騎總有點(diǎn)不習(xí)慣。所以考生們經(jīng)常練習(xí)是很重要的,天天做、天天看,一直到考試的那一天。這樣的話,就絕對(duì)不會(huì)生疏了,解題速度就能夠跟上去。如果現(xiàn)在你已經(jīng)開(kāi)始了高數(shù)基本階段的復(fù)習(xí),那么在之后的更加細(xì)密的復(fù)習(xí)過(guò)程中同學(xué)們需要注意哪些問(wèn)題呢

              首先要明確考試重點(diǎn),充分把握重點(diǎn)。比如高數(shù)第一章函數(shù)極限和連續(xù)的重點(diǎn)就是不定式的極限,考生要充分掌握求不定式極限的各種方法,比如利用極限的四則運(yùn)算、利用洛必達(dá)法則等等,另外兩個(gè)重要的極限也是重點(diǎn)內(nèi)容;對(duì)函數(shù)的連續(xù)性的探討也是考試的重點(diǎn),這要求我們需要充分理解函數(shù)連續(xù)的定義和掌握判斷連續(xù)性的方法。對(duì)于導(dǎo)數(shù)和微分,其實(shí)重點(diǎn)不是給一個(gè)函數(shù)求導(dǎo)數(shù),而重點(diǎn)是導(dǎo)數(shù)的定義,也就是抽象函數(shù)的可導(dǎo)性。對(duì)于積分部分,定積分、分段函數(shù)的積分、帶絕對(duì)值的函數(shù)的積分等各種積分的求法都是重要的題型,總而言之看上去不好處理的函數(shù)的積分常常是考試的重點(diǎn)。而且求積分的過(guò)程中,一定要注意積分的對(duì)稱性,我們要利用分段積分去掉絕對(duì)值把積分求出來(lái)。還有中值定理這個(gè)地方一般每年都要考一個(gè)題的,多看看以往考試題型,研究一下考試規(guī)律。對(duì)于多維函數(shù)的微積分部分里,多維隱函數(shù)的求導(dǎo),復(fù)合函數(shù)的偏導(dǎo)數(shù)等是考試的重點(diǎn)。二重積分的計(jì)算,當(dāng)然數(shù)學(xué)一里面還包括了多元函數(shù)積分學(xué),這里面每年都要考一個(gè)題目。另外曲線和曲面積分,這也是必考的重點(diǎn)內(nèi)容。一階微分方程,還有無(wú)窮級(jí)數(shù),無(wú)窮級(jí)數(shù)的求和,主要是間接的展開(kāi)法。重點(diǎn)主要就是這些了。要充分把握住這些重點(diǎn),同學(xué)們?cè)谝院蟮膹?fù)習(xí)的強(qiáng)化階段就應(yīng)該多研究歷年真題,這樣做也能更好地了解命題思路和難易度。

            考研數(shù)學(xué)高分心得體會(huì) 2

              1、認(rèn)真分析考試大綱,抓住考試重點(diǎn)

              考試大綱是最重要的備考資料,從歷年的數(shù)學(xué)大綱來(lái)看,每年基本上不變,所以同學(xué)們可以先參考2016年考研數(shù)學(xué)大綱,將大綱中要求的考點(diǎn)仔細(xì)梳理一下,一定要明確重點(diǎn),不要在不太重要的內(nèi)容和復(fù)雜的題目上投入太多精力。而對(duì)于線性代數(shù)的重點(diǎn)考查對(duì)象一定要重視,例如,線性方程組的求解基本上每年都會(huì)以解答題的形式考查,矩陣的特征值、特征向量以及化成對(duì)角矩陣是考試頻率最高的,也是較難的一類題目,這類問(wèn)題的關(guān)鍵,所以平時(shí)復(fù)習(xí)要加強(qiáng)這類題型的訓(xùn)練。另外,圍繞向量的秩的考查也是考試的重點(diǎn),大家在復(fù)習(xí)過(guò)程中一定要深刻理解它們的性質(zhì)。

              2、加強(qiáng)對(duì)基本概念、基本性質(zhì)的理解

              從歷年試題看,線性代數(shù)主要考查考生對(duì)基本概念、性質(zhì)的深入理解以及分析解決問(wèn)題的能力,需要考生能夠做到靈活地運(yùn)用所學(xué)的知識(shí),熟記一些解題方法去解決線性代數(shù)問(wèn)題。所以大家在復(fù)習(xí)過(guò)程中要準(zhǔn)確理解線性代數(shù)的基本概念,基本性質(zhì),為了深刻記憶,同學(xué)們可以結(jié)合一些例題和練習(xí)題來(lái)訓(xùn)練,只要概念和方法理解準(zhǔn)確到位,多做些相關(guān)題目,考試時(shí)碰到類似題目就一定能夠輕松正確解答;A(chǔ)知識(shí)的`復(fù)習(xí)主要是在基礎(chǔ)階段進(jìn)行,也就是今年暑期之前,要特別指出的是在基礎(chǔ)階段的復(fù)習(xí)中,不要輕視對(duì)教材中一般習(xí)題的練習(xí),一定要配合各章節(jié)內(nèi)容做一定數(shù)量的習(xí)題,總結(jié)一般題型的解題方法與思路。在此過(guò)程中,不要過(guò)多地去追求復(fù)雜的題,要腳踏實(shí)地、全面仔細(xì)地復(fù)習(xí),凡是考綱上有的內(nèi)容,就不要遺漏。這個(gè)階段雖然涉及綜合性、提高性題型不多,但基礎(chǔ)打得好將為下階段全面綜合復(fù)習(xí)創(chuàng)造一個(gè)有利前提,而且,試卷中多數(shù)綜合性、靈活性強(qiáng)的考題,其關(guān)鍵之處也在于考生是否能夠適當(dāng)運(yùn)用有關(guān)的基本概念、性質(zhì)和方法。

              3、重視真題的訓(xùn)練

              真題是最具有代表性的資料,因?yàn)榫性代數(shù)考試內(nèi)容和技巧比較單一,變化相對(duì)少,所以在考研真題題型中的重復(fù)率可以達(dá)到90%,因此我們要加強(qiáng)對(duì)歷年真題的重視,尤其是近十五年的真題,總體來(lái)講,做真題可以分兩步。第一步,做套題,這樣一是可以檢驗(yàn)復(fù)習(xí)的水平,發(fā)現(xiàn)概念和內(nèi)容上不熟悉的地方,另外為真正的考試積累經(jīng)驗(yàn)。第二步,按照章節(jié)分類解析,在第一步基礎(chǔ)上,有些題目有可能會(huì)做錯(cuò),把它們記下來(lái),在進(jìn)行各個(gè)章節(jié)專題訓(xùn)練時(shí)強(qiáng)化知識(shí)和方法。最后,把近十五年的真題再研究一下,弄清楚?嫉氖悄男﹥(nèi)容,把考試題型徹底熟悉,并且要會(huì)正確解答。一定不要過(guò)多的花時(shí)間去理解其它無(wú)關(guān)或者非重點(diǎn)內(nèi)容。

              4、回顧知識(shí)點(diǎn),進(jìn)行適當(dāng)?shù)哪M“實(shí)戰(zhàn)”

              最后沖刺階段,需要回歸教材,把課本再認(rèn)真梳理一遍,查遺補(bǔ)漏,將知識(shí)明確化、系統(tǒng)化。另外,可以做幾套模擬試卷。從知識(shí)點(diǎn)到做題思路,解題技巧,答題順序等各個(gè)方面進(jìn)行強(qiáng)化訓(xùn)練,千萬(wàn)不要做太難太偏的模擬題,不然會(huì)做無(wú)用功,甚至對(duì)考試失去信心,也起不到“實(shí)戰(zhàn)”的價(jià)值?记皟商鞂⒅匾交仡櫼槐椤Mㄟ^(guò)完整的復(fù)習(xí),形成最終的競(jìng)爭(zhēng)力,考出最好的成績(jī)。

              考研數(shù)學(xué)高效復(fù)習(xí)的建議

              一、避免雜亂無(wú)章、毫無(wú)頭緒

              大家可以把知識(shí)點(diǎn)系統(tǒng)歸類到整體的知識(shí)框架中可以避免雜亂無(wú)章、毫無(wú)頭緒的現(xiàn)象。大家在復(fù)習(xí)每一章時(shí)應(yīng)將這一部分的知識(shí)點(diǎn)做系統(tǒng)的梳理。近年考試中高等數(shù)學(xué)的命題呈現(xiàn)出明顯的規(guī)律性,如求極限、中值定理、函數(shù)極值、重積分的計(jì)算等,都是每年試題中都會(huì)設(shè)計(jì)命題的重要知識(shí)點(diǎn)。這就要求大家在認(rèn)真梳理考點(diǎn)的基礎(chǔ)上著重對(duì)這些問(wèn)題多下功夫徹底解決。此外,善于從做題中總結(jié)。高數(shù)題海無(wú)邊,好多同學(xué)做很多題之后還是摸不到方向,新東方在線認(rèn)為,主要癥結(jié)還是在于沒(méi)有在做題中認(rèn)真總結(jié)方法、規(guī)律和技巧。這就要求大家在解題的時(shí)候遇到問(wèn)題要及時(shí)總結(jié)歸納,熟練掌握各類重要題型解題的要領(lǐng)和關(guān)鍵。

              二、線性代數(shù)抓好兩條主線

              線性代數(shù)復(fù)習(xí)總體而言需要抓好兩條主線:一條主線是行列式、矩陣、向量組作為研究線性方程組的三大工具與線性方程組的解的關(guān)系以及它們之間的聯(lián)系;另外一條抓顯示特征值與特征向量、矩陣的對(duì)角化作為工具如何應(yīng)用于二次型的標(biāo)準(zhǔn)化。同學(xué)們?cè)趶?fù)習(xí)時(shí)必須在掌握各部分的基本概念、原理、性質(zhì)的基礎(chǔ)上明確知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,有條有理地全面掌握這一學(xué)科的重要內(nèi)容。

              三、概率論與數(shù)理統(tǒng)計(jì)知識(shí)點(diǎn)吃透

              概率論與數(shù)理統(tǒng)計(jì)對(duì)基本概念、原理的深入理解以及分析解決問(wèn)題的能力要求較高,所以大家首先要做好的就是根據(jù)最新考試大綱規(guī)定的內(nèi)容,將概率論與數(shù)理統(tǒng)計(jì)的內(nèi)容再細(xì)細(xì)梳理一遍,將基本概念、基本理論和基本方法結(jié)合一定的基本題練習(xí)徹底吃透,這樣才能在題目形式千變?nèi)f化的情況下把握“萬(wàn)變不離其宗”的本質(zhì),做到靈活應(yīng)變。專家提醒考生,大家要注意及時(shí)重要的公式、結(jié)論和一些對(duì)知識(shí)掌握和解題有幫助的規(guī)律,必定能使解題能力得到顯著提高。

            考研數(shù)學(xué)高分心得體會(huì) 3

              隨著近年來(lái)“考研熱”的持續(xù)升溫,已有越來(lái)越多的“落榜生”選擇二次或者多次考研。考生選擇再戰(zhàn)考研之前,一定要對(duì)自己的情況做綜合分析,并不是所有考生都適合二次或者多次考研。一般情況下,有三種考生是適合考研的:

              第一,自身所學(xué)專業(yè)限制性很強(qiáng)、就業(yè)面很窄、本科學(xué)校競(jìng)爭(zhēng)力很弱的考生,這類考生亟須通過(guò)考研來(lái)增加求職競(jìng)爭(zhēng)籌碼;

              第二,不著急就業(yè)、想繼續(xù)深造,但因?yàn)檎Z(yǔ)言或者經(jīng)濟(jì)等原因,只能選擇在國(guó)內(nèi)讀研的考生;

              第三,名校情結(jié)非常濃重、而且自我約束力比較強(qiáng)的考生。

              考生有過(guò)一次考研失敗的經(jīng)歷后,往往再次考研時(shí)目的性非常明確,但是這并不是決定考研成功的最關(guān)鍵因素,因此,如何提高成績(jī)最為必要。

              對(duì)于這類考生,建議復(fù)習(xí)時(shí)不妨分為五個(gè)階段:第一階段做基礎(chǔ)知識(shí)回顧;第二三階段強(qiáng)化訓(xùn)練;第四階段系統(tǒng)復(fù)習(xí);第五階段沖刺補(bǔ)考。當(dāng)然,考生要根據(jù)個(gè)人情況安排適合自己的復(fù)習(xí)時(shí)間段。小編提醒大家,調(diào)劑成功的同學(xué)不在失利考生范圍內(nèi),最全的`調(diào)劑攻略戳。

              考研落榜步入職場(chǎng)

              有機(jī)構(gòu)曾對(duì)大學(xué)生畢業(yè)后的流向做了一個(gè)統(tǒng)計(jì),其中94%以上畢業(yè)后會(huì)進(jìn)入商界、3%左右會(huì)進(jìn)入政界、2%左右會(huì)在學(xué)術(shù)界發(fā)展,最后成為國(guó)家科學(xué)研究與創(chuàng)造前沿的學(xué)者。因此,對(duì)于考研失利的考生來(lái)說(shuō),大部分都會(huì)轉(zhuǎn)入職場(chǎng)。

              在求職大軍中,考研失利的學(xué)生占了很大一部分比例。一些學(xué)生在經(jīng)歷過(guò)考研失利的“重創(chuàng)”后,甚至?xí)谇舐氈斜憩F(xiàn)出一些不自信。作為成年人,不要被這點(diǎn)失敗給嚇蒙了,要知道,你的職業(yè)生涯還沒(méi)開(kāi)始呢,比考研失利更大的挫折可能還在后頭。

              應(yīng)屆生在求職時(shí),既不能失去自信,又不能失去客觀、理性。應(yīng)屆生求職時(shí)應(yīng)合理展現(xiàn)自己的價(jià)值,即使有些預(yù)期短時(shí)間內(nèi)難以達(dá)到,也完全可以通過(guò)科學(xué)的職業(yè)規(guī)劃一步步實(shí)現(xiàn)。

              很多企業(yè)對(duì)考研失利的學(xué)生并不排斥,求職者如果能把考研堅(jiān)持下來(lái)了,說(shuō)明其有一定的恒心和毅力,這也是他們非?粗氐。

            考研數(shù)學(xué)高分心得體會(huì) 4

              考研數(shù)學(xué)暑期復(fù)習(xí)的方法策略

              一、多動(dòng)手,多思考

              對(duì)于大部分學(xué)生而言,數(shù)學(xué)在大學(xué)課程中都學(xué)習(xí)過(guò),但是由于在大一時(shí)高數(shù)學(xué)習(xí)得較淺,再加上學(xué)完時(shí)間較長(zhǎng),很多知識(shí)點(diǎn)都已遺忘。所以第一遍的基礎(chǔ)復(fù)習(xí)一定要抱著一種重新學(xué)習(xí)的態(tài)度,認(rèn)認(rèn)真真重新再把大學(xué)課程中學(xué)習(xí)過(guò)的教材復(fù)習(xí)一遍,把遺忘的知識(shí)點(diǎn)一一撿起來(lái)。復(fù)習(xí)時(shí),對(duì)于例題和課后習(xí)題一定要?jiǎng)邮肿鲆槐,多思考多總結(jié)做題的思路和方法。

              二、穩(wěn)抓“三基”

              數(shù)學(xué)水平的高低是通過(guò)解題來(lái)檢測(cè)的,而基本概念、方法、理論也只有在解題中才能真正理解和鞏固。試題千變?nèi)f化,但其知識(shí)點(diǎn)及知識(shí)體系卻基本相同,考試的題型也相對(duì)固定,一般題型都存在一定的解題規(guī)律。通過(guò)做題可以切實(shí)提高數(shù)學(xué)的解題能力,做到面對(duì)任何試題都能有條不紊地分析和計(jì)算。

              三、理解知識(shí)點(diǎn)的實(shí)質(zhì)

              數(shù)學(xué)學(xué)習(xí)不能死記硬背,死搬硬套。對(duì)于每一個(gè)知識(shí)點(diǎn),按照老師教授的和自己做題的體會(huì)結(jié)合起來(lái)深刻理解知識(shí)點(diǎn),不能光注重答案。遇到自己實(shí)在不會(huì)做的題目,不能看看答案解析就完事了,不能認(rèn)為自己看明白的題目應(yīng)該就會(huì)做了。一定要拋掉答案解析,自己再重新做一遍。只有自己真正會(huì)做了,才能理解此題考查的是哪個(gè)知識(shí)點(diǎn),該知識(shí)點(diǎn)是如何考查的。

              四、多總結(jié),勤整理

              在學(xué)習(xí)過(guò)程中一定要把自己的心得或體會(huì)以標(biāo)注的形式寫(xiě)在書(shū)上或筆記本上。對(duì)于一些比較好的例題,盡量挖掘題目的內(nèi)涵,這一點(diǎn)很重要,并且要貫穿到整個(gè)考研復(fù)習(xí)中去;蚴亲约旱囊族e(cuò)題,易混淆的知識(shí)點(diǎn)或概念,可以總結(jié)在筆記本上。尤其是在最后的沖刺階段,考前的半個(gè)月,我們可以把前面整理的'筆記本認(rèn)真復(fù)習(xí)一遍。

              五、全面復(fù)習(xí)考點(diǎn)

              對(duì)于大綱中要求的考點(diǎn),要求同學(xué)們?nèi)鎻?fù)習(xí)到位。不能因?yàn)橛行┲R(shí)點(diǎn)是冷點(diǎn)(即考頻率不高的知識(shí)點(diǎn)或是近年考試中沒(méi)考過(guò)的知識(shí)點(diǎn)),就主觀斷定這個(gè)知識(shí)點(diǎn)今年可能還是不考,沒(méi)必要復(fù)習(xí)了。只要是考綱中出現(xiàn)的考點(diǎn),我們就全力以赴地復(fù)習(xí)到位。

              考研數(shù)學(xué)暑期強(qiáng)化怎么用真題

              1、實(shí)戰(zhàn)做題尋找感覺(jué)

              復(fù)習(xí)完數(shù)學(xué)基礎(chǔ)知識(shí)后,可以取一套真題,模擬真是場(chǎng)景進(jìn)行實(shí)戰(zhàn)訓(xùn)練。這樣,在做題的過(guò)程中會(huì)有緊張的感覺(jué),能檢測(cè)自己的基礎(chǔ)知識(shí)和應(yīng)試能力,還能幫助有效利用時(shí)間。

              2、查漏補(bǔ)缺

              數(shù)學(xué)真題由于全面,可以幫助廣大考生實(shí)際了解大綱要求的知識(shí)點(diǎn),查明自己在哪些地方還沒(méi)有完全掌握。因此,做完題之后一定要養(yǎng)成總結(jié)的習(xí)慣,總結(jié)錯(cuò)題的原因,題目的考察要點(diǎn),用到的原理和公式等。

              3、制定有效的學(xué)習(xí)計(jì)劃

              由于做真題得出了學(xué)習(xí)中的遺漏點(diǎn),因此,總結(jié)錯(cuò)題之后可以適當(dāng)調(diào)整自己的學(xué)習(xí)計(jì)劃,使復(fù)習(xí)更加高效。通常情況下是針對(duì)真題中出現(xiàn)的問(wèn)題,對(duì)相應(yīng)科目和章節(jié)重點(diǎn)的進(jìn)行復(fù)習(xí)安排。

              4、總結(jié)循環(huán)規(guī)律

              真題的每道試題都有自己的出題規(guī)律,數(shù)學(xué)也不例外,它一定是有幾個(gè)知識(shí)點(diǎn),相互關(guān)聯(lián),互相推導(dǎo),或互相替換,最后得到另一個(gè)知識(shí)點(diǎn)的,只要你認(rèn)真研究,就不難能發(fā)現(xiàn)這些真題的了出題規(guī)律

            考研數(shù)學(xué)高分心得體會(huì) 5

              具體來(lái)說(shuō),考研數(shù)學(xué)基礎(chǔ)的掌握,可以通過(guò)以下方法:首先,大家要把考研數(shù)學(xué)復(fù)習(xí)全書(shū)上總結(jié)好的知識(shí)點(diǎn)認(rèn)真掌握住。一般不同版本的復(fù)習(xí)全書(shū)上的知識(shí)點(diǎn)講解都很全面、詳細(xì),還有例題講解當(dāng)中總結(jié)出的解題技巧和方法,推導(dǎo)出的公式、定理,都要重點(diǎn)記憶。其次,數(shù)學(xué)也要做筆記。由于復(fù)習(xí)全書(shū)上的知識(shí)點(diǎn)過(guò)于詳細(xì),在以后的第二、三輪復(fù)習(xí)中,就沒(méi)有時(shí)間去系統(tǒng)的看了,而且可能其中大部分你已經(jīng)掌握了。這就需要你把其中精華的地方和自己掌握的不好的地方以及考試的?贾R(shí)點(diǎn)總結(jié)在一個(gè)本子上,這樣再?gòu)?fù)習(xí)的時(shí)候就可以直接看這個(gè)本子,會(huì)節(jié)省下很多時(shí)間,提高效率。而且復(fù)習(xí)間歇,可以隨時(shí)拿出來(lái)記一記、背一背。這些基礎(chǔ)知識(shí)如果一段時(shí)間不看就會(huì)有些生疏,用的時(shí)候拿不準(zhǔn)。所以,要每天都攜帶在身上,就像英語(yǔ)單詞小冊(cè)子一樣,要經(jīng)常溫習(xí)。

              學(xué)會(huì)總結(jié),善于歸納

              大家要學(xué)會(huì)使知識(shí)系統(tǒng)化。善于總結(jié)也是需要十分強(qiáng)調(diào)的'一點(diǎn)。因?yàn)楹芏嗤瑢W(xué)做題的過(guò)程就到對(duì)過(guò)答案或是糾正過(guò)錯(cuò)誤就結(jié)束了,一套題的價(jià)值也就到此為止了。因此大家在糾正完錯(cuò)誤之后,需要再把這套試題從頭看一遍,總結(jié)一下自己都在哪些方面出錯(cuò)了,原因是什么,這套題中有沒(méi)有出現(xiàn)你不知道的新的方法、思路,新推導(dǎo)出的定理、公式等,并把這些有用的知識(shí)全都寫(xiě)到你的筆記本上,以便隨時(shí)查看和重點(diǎn)記憶。對(duì)于大題的解題方法,要仔細(xì)想一想,都涉及到哪些科目和章節(jié)了,這些知識(shí)點(diǎn)之間有哪些聯(lián)系等,從而使自己所掌握的知識(shí)系統(tǒng)化,以達(dá)到融會(huì)貫通。只有這樣,才能使你做過(guò)的題目實(shí)現(xiàn)其最大的價(jià)值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過(guò)的題在以后的復(fù)習(xí)中如果沒(méi)有時(shí)間了,就不用再拿出來(lái)重新看了,因?yàn)槟阋呀?jīng)把要掌握的精華總結(jié)好了,只需看你的筆記本就OK了。

            考研數(shù)學(xué)高分心得體會(huì) 6

              如何用好真題 建議大家兩輪,第一輪真題可以按照高學(xué)、線代、概率章節(jié)做。盡快盡早做。

              第二輪近十年真題按照套卷做,三小時(shí)能不能完成,遇到困難怎么辦 高分學(xué)員建議數(shù)1數(shù)2數(shù)3,都要做,只要考綱要求的。試卷之間有差異,只要考卷要求。

              對(duì)真題要做歸納和總結(jié)。

              大家如果在真題學(xué)習(xí)過(guò)程當(dāng)中有困難可以關(guān)注數(shù)學(xué)歷年真題經(jīng)典題、重難點(diǎn)題精解精練。

              第二要做12套左右高質(zhì)量的模擬卷。真題在強(qiáng)化課程當(dāng)中引用過(guò)、老師講過(guò)。做的時(shí)候感覺(jué)做過(guò)嗎 但是模擬卷都是全新的。為什么要交錯(cuò)做。真題做一套感覺(jué)自己考清華的,做做模擬題信心又沒(méi)了。模擬卷是打擊你的,真題提升你信心的。交錯(cuò)使用效果會(huì)更好。

              第三不要偏科,不能放棄線代或者概率。特別是概率,一直同學(xué)們把概率當(dāng)做完游戲,概率永遠(yuǎn)爬不上去,然后說(shuō)概率放棄。線代和概率大題很容易把握很容易拿分。所以同學(xué)們一定要記住考場(chǎng)上要把會(huì)做的題拿下,復(fù)習(xí)的時(shí)候把可能考的題先拿下,千萬(wàn)不要放棄線代和概率。

              命題專家20xx年到20xx年都說(shuō)了考生分析問(wèn)題和解決問(wèn)題的能力比較差,特別是處理概率題的能力很差。你做題是不是可以考慮高學(xué)留在最后,今年得分率0.08,不做也無(wú)所謂了。

              資料舍取,真題是必須的,真題是最核心的,真題兩遍不能完成的話,其他資料讓位。模擬卷也是,是打擊你的,上了考場(chǎng)不至于崩潰。

              提高學(xué)習(xí)效率,一定要獨(dú)立做題?炊坏扔谧龀鰜(lái),看看都懂,一本數(shù)學(xué)書(shū)看得很快,如果我選擇我寧愿從第一步獨(dú)立做到最后。

              整理錯(cuò)題本,周一到周五做新題,雙休日整理錯(cuò)題。由厚到薄,看需要注意什么。

              計(jì)算錯(cuò)誤照片集,每次拍一張照,考前定期看自己的錯(cuò)誤,如果想發(fā)朋友圈也可以。所以這是一些提高學(xué)習(xí)效率的方法。

              考研高等數(shù)學(xué)的重要定理證明

              高數(shù)定理證明之微分中值定理:

              這一部分內(nèi)容比較豐富,包括費(fèi)馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會(huì)證。

              費(fèi)馬引理的條件有兩個(gè):1.f'(x0)存在2.f(x0)為f(x)的極值,結(jié)論為f'(x0)=0?紤]函數(shù)在一點(diǎn)的導(dǎo)數(shù),用什么方法 自然想到導(dǎo)數(shù)定義。我們可以按照導(dǎo)數(shù)定義寫(xiě)出f'(x0)的極限形式。往下如何推理 關(guān)鍵要看第二個(gè)條件怎么用!癴(x0)為f(x)的極值”翻譯成數(shù)學(xué)語(yǔ)言即f(x)-f(x0)<0(或>0),對(duì)x0的某去心鄰域成立。結(jié)合導(dǎo)數(shù)定義式中函數(shù)部分表達(dá)式,不難想到考慮函數(shù)部分的正負(fù)號(hào)。若能得出函數(shù)部分的符號(hào),如何得到極限值的符號(hào)呢 極限的保號(hào)性是個(gè)橋梁。

              費(fèi)馬引理中的“引理”包含著引出其它定理之意。那么它引出的定理就是我們下面要討論的羅爾定理。若在微分中值定理這部分推舉一個(gè)考頻最高的,那羅爾定理當(dāng)之無(wú)愧。該定理的條件和結(jié)論想必各位都比較熟悉。條件有三:“閉區(qū)間連續(xù)”、“開(kāi)區(qū)間可導(dǎo)”和“端值相等”,結(jié)論是在開(kāi)區(qū)間存在一點(diǎn)(即所謂的中值),使得函數(shù)在該點(diǎn)的導(dǎo)數(shù)為0。

              該定理的證明不好理解,需認(rèn)真體會(huì):條件怎么用 如何和結(jié)論建立聯(lián)系 當(dāng)然,我們現(xiàn)在討論該定理的證明是“馬后炮”式的:已經(jīng)有了證明過(guò)程,我們看看怎么去理解掌握。如果在羅爾生活的時(shí)代,證出該定理,那可是十足的創(chuàng)新,是要流芳百世的。

              閑言少敘,言歸正傳。既然我們討論費(fèi)馬引理的作用是要引出羅爾定理,那么羅爾定理的證明過(guò)程中就要用到費(fèi)馬引理。我們對(duì)比這兩個(gè)定理的結(jié)論,不難發(fā)現(xiàn)是一致的:都是函數(shù)在一點(diǎn)的導(dǎo)數(shù)為0。話說(shuō)到這,可能有同學(xué)要說(shuō):羅爾定理的證明并不難呀,由費(fèi)馬引理得結(jié)論不就行了。大方向?qū)Γ^(guò)程沒(méi)這么簡(jiǎn)單。起碼要說(shuō)清一點(diǎn):費(fèi)馬引理的條件是否滿足,為什么滿足

              前面提過(guò)費(fèi)馬引理的條件有兩個(gè)——“可導(dǎo)”和“取極值”,“可導(dǎo)”不難判斷是成立的,那么“取極值”呢 似乎不能由條件直接得到。那么我們看看哪個(gè)條件可能和極值產(chǎn)生聯(lián)系。注意到羅爾定理的第一個(gè)條件是函數(shù)在閉區(qū)間上連續(xù)。我們知道閉區(qū)間上的連續(xù)函數(shù)有很好的性質(zhì),哪條性質(zhì)和極值有聯(lián)系呢 不難想到最值定理。

              那么最值和極值是什么關(guān)系 這個(gè)點(diǎn)需要想清楚,因?yàn)橹苯佑绊懴旅嫱评淼淖呦。結(jié)論是:若最值取在區(qū)間內(nèi)部,則最值為極值;若最值均取在區(qū)間端點(diǎn),則最值不為極值。那么接下來(lái),分兩種情況討論即可:若最值取在區(qū)間內(nèi)部,此種情況下費(fèi)馬引理?xiàng)l件完全成立,不難得出結(jié)論;若最值均取在區(qū)間端點(diǎn),注意到已知條件第三條告訴我們端點(diǎn)函數(shù)值相等,由此推出函數(shù)在整個(gè)閉區(qū)間上的最大值和最小值相等,這意味著函數(shù)在整個(gè)區(qū)間的表達(dá)式恒為常數(shù),那在開(kāi)區(qū)間上任取一點(diǎn)都能使結(jié)論成立。

              拉格朗日定理和柯西定理是用羅爾定理證出來(lái)的。掌握這兩個(gè)定理的證明有一箭雙雕的效果:真題中直接考過(guò)拉格朗日定理的證明,若再考這些原定理,那自然駕輕就熟;此外,這兩個(gè)的定理的證明過(guò)程中體現(xiàn)出來(lái)的基本思路,適用于證其它結(jié)論。

              以拉格朗日定理的證明為例,既然用羅爾定理證,那我們對(duì)比一下兩個(gè)定理的結(jié)論。羅爾定理的結(jié)論等號(hào)右側(cè)為零。我們可以考慮在草稿紙上對(duì)拉格朗日定理的結(jié)論作變形,變成羅爾定理結(jié)論的形式,移項(xiàng)即可。接下來(lái),要從變形后的式子讀出是對(duì)哪個(gè)函數(shù)用羅爾定理的結(jié)果。這就是構(gòu)造輔助函數(shù)的過(guò)程——看等號(hào)左側(cè)的式子是哪個(gè)函數(shù)求導(dǎo)后,把x換成中值的結(jié)果。這個(gè)過(guò)程有點(diǎn)像犯罪現(xiàn)場(chǎng)調(diào)查:根據(jù)這個(gè)犯罪現(xiàn)場(chǎng),反推嫌疑人是誰(shuí)。當(dāng)然,構(gòu)造輔助函數(shù)遠(yuǎn)比破案要簡(jiǎn)單,簡(jiǎn)單的題目直接觀察;復(fù)雜一些的`,可以把中值換成x,再對(duì)得到的函數(shù)求不定積分。

              高數(shù)定理證明之求導(dǎo)公式:

              20xx年真題考了一個(gè)證明題:證明兩個(gè)函數(shù)乘積的導(dǎo)數(shù)公式。幾乎每位同學(xué)都對(duì)這個(gè)公式怎么用比較熟悉,而對(duì)它怎么來(lái)的較為陌生。實(shí)際上,從授課的角度,這種在20xx年前從未考過(guò)的基本公式的證明,一般只會(huì)在基礎(chǔ)階段講到。如果這個(gè)階段的考生帶著急功近利的心態(tài)只關(guān)注結(jié)論怎么用,而不關(guān)心結(jié)論怎么來(lái)的,那很可能從未認(rèn)真思考過(guò)該公式的證明過(guò)程,進(jìn)而在考場(chǎng)上變得很被動(dòng)。這里給20xx考研學(xué)子提個(gè)醒:要重視基礎(chǔ)階段的復(fù)習(xí),那些真題中未考過(guò)的重要結(jié)論的證明,有可能考到,不要放過(guò)。

              當(dāng)然,該公式的證明并不難。先考慮f(x)_(x)在點(diǎn)x0處的導(dǎo)數(shù)。函數(shù)在一點(diǎn)的導(dǎo)數(shù)自然用導(dǎo)數(shù)定義考察,可以按照導(dǎo)數(shù)定義寫(xiě)出一個(gè)極限式子。該極限為“0分之0”型,但不能用洛必達(dá)法則,因?yàn)榉肿拥膶?dǎo)數(shù)不好算(乘積的導(dǎo)數(shù)公式恰好是要證的,不能用!)。利用數(shù)學(xué)上常用的拼湊之法,加一項(xiàng),減一項(xiàng)。這個(gè)“無(wú)中生有”的項(xiàng)要和前后都有聯(lián)系,便于提公因子。之后分子的四項(xiàng)兩兩配對(duì),除以分母后考慮極限,不難得出結(jié)果。再由x0的任意性,便得到了f(x)_(x)在任意點(diǎn)的導(dǎo)數(shù)公式。

              高數(shù)定理證明之積分中值定理:

              該定理?xiàng)l件是定積分的被積函數(shù)在積分區(qū)間(閉區(qū)間)上連續(xù),結(jié)論可以形式地記成該定積分等于把被積函數(shù)拎到積分號(hào)外面,并把積分變量x換成中值。如何證明 可能有同學(xué)想到用微分中值定理,理由是微分相關(guān)定理的結(jié)論中含有中值?梢园凑沾怂悸吠路治,不過(guò)更易理解的思路是考慮連續(xù)相關(guān)定理(介值定理和零點(diǎn)存在定理),理由更充分些:上述兩個(gè)連續(xù)相關(guān)定理的結(jié)論中不但含有中值而且不含導(dǎo)數(shù),而待證的積分中值定理的結(jié)論也是含有中值但不含導(dǎo)數(shù)。

              若我們選擇了用連續(xù)相關(guān)定理去證,那么到底選擇哪個(gè)定理呢 這里有個(gè)小的技巧——看中值是位于閉區(qū)間還是開(kāi)區(qū)間。介值定理和零點(diǎn)存在定理的結(jié)論中的中值分別位于閉區(qū)間和開(kāi)區(qū)間,而待證的積分中值定理的結(jié)論中的中值位于閉區(qū)間。那么何去何從,已經(jīng)不言自明了。

              若順利選中了介值定理,那么往下如何推理呢 我們可以對(duì)比一下介值定理和積分中值定理的結(jié)論:介值定理的結(jié)論的等式一邊為某點(diǎn)處的函數(shù)值,而等號(hào)另一邊為常數(shù)A。我們自然想到把積分中值定理的結(jié)論朝以上的形式變形。等式兩邊同時(shí)除以區(qū)間長(zhǎng)度,就能達(dá)到我們的要求。當(dāng)然,變形后等號(hào)一側(cè)含有積分的式子的長(zhǎng)相還是挺有迷惑性的,要透過(guò)現(xiàn)象看本質(zhì),看清楚定積分的值是一個(gè)數(shù),進(jìn)而定積分除以區(qū)間長(zhǎng)度后仍為一個(gè)數(shù)。這個(gè)數(shù)就相當(dāng)于介值定理結(jié)論中的A。

              接下來(lái)如何推理,這就考察各位對(duì)介值定理的熟悉程度了。該定理?xiàng)l件有二:1.函數(shù)在閉區(qū)間連續(xù),2.實(shí)數(shù)A位于函數(shù)在閉區(qū)間上的最大值和最小值之間,結(jié)論是該實(shí)數(shù)能被取到(即A為閉區(qū)間上某點(diǎn)的函數(shù)值)。再看若積分中值定理的條件成立否能推出介值定理的條件成立。函數(shù)的連續(xù)性不難判斷,僅需說(shuō)明定積分除以區(qū)間長(zhǎng)度這個(gè)實(shí)數(shù)位于函數(shù)的最大值和最小值之間即可。而要考察一個(gè)定積分的值的范圍,不難想到比較定理(或估值定理)。

              高數(shù)定理證明之微積分基本定理:

              該部分包括兩個(gè)定理:變限積分求導(dǎo)定理和牛頓-萊布尼茨公式。

              變限積分求導(dǎo)定理的條件是變上限積分函數(shù)的被積函數(shù)在閉區(qū)間連續(xù),結(jié)論可以形式地理解為變上限積分函數(shù)的導(dǎo)數(shù)為把積分號(hào)扔掉,并用積分上限替換被積函數(shù)的自變量。注意該求導(dǎo)公式對(duì)閉區(qū)間成立,而閉區(qū)間上的導(dǎo)數(shù)要區(qū)別對(duì)待:對(duì)應(yīng)開(kāi)區(qū)間上每一點(diǎn)的導(dǎo)數(shù)是一類,而區(qū)間端點(diǎn)處的導(dǎo)數(shù)屬單側(cè)導(dǎo)數(shù);ㄩ_(kāi)兩朵,各表一枝。我們先考慮變上限積分函數(shù)在開(kāi)區(qū)間上任意點(diǎn)x處的導(dǎo)數(shù)。一點(diǎn)的導(dǎo)數(shù)仍用導(dǎo)數(shù)定義考慮。至于導(dǎo)數(shù)定義這個(gè)極限式如何化簡(jiǎn),筆者就不能剝奪讀者思考的權(quán)利了。單側(cè)導(dǎo)數(shù)類似考慮。

              “牛頓-萊布尼茨公式是聯(lián)系微分學(xué)與積分學(xué)的橋梁,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運(yùn)算,同時(shí)在理論上標(biāo)志著微積分完整體系的形成,從此微積分成為一門真正的學(xué)科!边@段話精彩地指出了牛頓-萊布尼茨公式在高數(shù)中舉足輕重的作用。而多數(shù)考生能熟練運(yùn)用該公式計(jì)算定積分。不過(guò),提起該公式的證明,熟悉的考生并不多。

              該公式和變限積分求導(dǎo)定理的公共條件是函數(shù)f(x)在閉區(qū)間連續(xù),該公式的另一個(gè)條件是F(x)為f(x)在閉區(qū)間上的一個(gè)原函數(shù),結(jié)論是f(x)在該區(qū)間上的定積分等于其原函數(shù)在區(qū)間端點(diǎn)處的函數(shù)值的差。該公式的證明要用到變限積分求導(dǎo)定理。若該公式的條件成立,則不難判斷變限積分求導(dǎo)定理的條件成立,故變限積分求導(dǎo)定理的結(jié)論成立。

              注意到該公式的另一個(gè)條件提到了原函數(shù),那么我們把變限積分求導(dǎo)定理的結(jié)論用原函數(shù)的語(yǔ)言描述一下,即f(x)對(duì)應(yīng)的變上限積分函數(shù)為f(x)在閉區(qū)間上的另一個(gè)原函數(shù)。根據(jù)原函數(shù)的概念,我們知道同一個(gè)函數(shù)的兩個(gè)原函數(shù)之間只差個(gè)常數(shù),所以F(x)等于f(x)的變上限積分函數(shù)加某個(gè)常數(shù)C。萬(wàn)事俱備,只差寫(xiě)一下。將該公式右側(cè)的表達(dá)式結(jié)合推出的等式變形,不難得出結(jié)論。

            【考研數(shù)學(xué)高分心得體會(huì) 】相關(guān)文章:

            考研數(shù)學(xué)心得體會(huì)12-27

            考研數(shù)學(xué)心得體會(huì)15篇12-27

            考研英語(yǔ)作文:表目的類高分句型05-05

            考研寢室考研心得體會(huì)12-27

            考研的心得體會(huì)02-06

            考研心得體會(huì)04-22

            語(yǔ)文考研心得體會(huì)01-24

            學(xué)生考研心得體會(huì)01-09

            大學(xué)考研心得體會(huì)12-27