亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>七年級數(shù)學(xué)教案>數(shù)學(xué)教案-不等式基本性質(zhì)

            數(shù)學(xué)教案-不等式基本性質(zhì)

            時間:2022-08-16 21:21:08 七年級數(shù)學(xué)教案 我要投稿
            • 相關(guān)推薦

            數(shù)學(xué)教案-不等式基本性質(zhì)

            不等式的基本性質(zhì)

            數(shù)學(xué)教案-不等式基本性質(zhì)

             

            教學(xué)目的

            掌握不等式的基本性質(zhì),會用不等式的基本性質(zhì)進(jìn)行不等式的變形。

             

            教學(xué)過程(adivasplayground.com)

            師:我們已學(xué)過等式,不等式,現(xiàn)在我們來看兩組式子(教師出示小黑板中的兩組式子),請同學(xué)們觀察,哪些是等式?哪些是不等式?

            第一組:1+2=3; a+b=b+a;  S = ab;  4+x = 7.

                   第二組:-7 < -5;  3+4 > 1+4;   2x ≤6,  a+2 ≥0; 3≠4.

            生:第一組都是等式,第二組都是不等式。

            師:那么,什么叫做等式?什么叫做不等式?

            生:表示相等關(guān)系的式子叫做等式;表示不等式的式子叫做不等式。

            師:在數(shù)學(xué)熾,我們用等號“=”來表示相等關(guān)系,用不等式號“〈”、“〉”或“≠”表示不等關(guān)系,其中“>”和“<”表示大小關(guān)系。表示大小關(guān)系的不等式是我們中學(xué)教學(xué)所要研究的。

            前面我們學(xué)過了等式,同學(xué)們還記得等式的性質(zhì)嗎?

            生:等式有這樣的性質(zhì):等式兩邊都加上,或都減去,或都乘以,或都除以( 除數(shù)不為零)同一個數(shù),所得到的仍是等式。

            師:很好!當(dāng)我們開始研究不等式的時候,自然會聯(lián)想到,是否有與等式相類似的性質(zhì),也就是說,如果在不等式的兩邊都加上,或都減去,或都乘以,或都除經(jīng)(除數(shù)不為零)同一個數(shù),結(jié)果將會如何呢?讓我們先做一些試驗練習(xí)。

            練習(xí)1  (回答)用小于號“<”或大于號“>”填空。

            (1)7 ___ 4;    (2)- 2____6;     (3)- 3_____ -2;  (4)- 4_____-6

            練習(xí)2(口答)分別從練習(xí)1中四個不等式出發(fā),進(jìn)行下面的運(yùn)算。

            (1)兩邊都加上(或都減去)5,結(jié)果怎樣?不等號的方向改變了嗎?

            (2)兩邊都乘以(或都除以)5,結(jié)果怎樣?不等號的方向改變了嗎?

            (3)兩邊都乘以(或都除以)(-5),結(jié)果怎樣?不等號的方向改變了嗎?

            生:我們發(fā)現(xiàn):在練習(xí)2中,第(1)、(2)題的結(jié)果是不等號的方向不變;在第(3)題中,結(jié)果是不等號的方向改變了!

            師:同學(xué)們觀察得很認(rèn)真,大家再進(jìn)一步探討一下,在什么情況下不等號的方向就會發(fā)生改變呢?

            生甲:在原不等式的兩邊都乘以(或除以)一個負(fù)數(shù)的情況下,不等號的方向要改變。

            師:有沒有不同的意見?大家都同意他的看法嗎?可能還有同學(xué)不放心,讓我們再做一些試驗。

            練習(xí)3(口答)分別在下面四個不等式的兩邊都以乘以(可除以)-2,看看不等號的方向是否改變:

                 7>4;-2<6;-3<-2;-4>-6。

            師:現(xiàn)在我們可以歸納出不等式的基本性質(zhì),一般地說,不等式的基本性質(zhì)有三條:

            性質(zhì)1:不等式的兩邊都加上(或都減去)同一個數(shù),不等號的方向      。

            (讓同學(xué)回答。)

            性質(zhì)2:不等式的兩邊都乘以(或都除以)同一個正數(shù),不等號的方向     。(讓同學(xué)回答。)

            性質(zhì)3:不等式的兩邊都乘以(或都除以)同一個負(fù)數(shù),不等號的方向      。(讓同學(xué)回答。)

            現(xiàn)在請大家翻開課本,一起朗讀用黑體字寫的三條基本性質(zhì)。

            不等式的這三條基本性質(zhì),都可以用數(shù)學(xué)語言表達(dá)出來,先請一位同學(xué)說一說第一條基本性質(zhì)。

            生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

            師:對a和b有什么要求嗎?對c有什么要求?

            生:沒有什么要求。

            師:哪位同學(xué)來回答第二、三條性質(zhì)?

            生甲:如果a<b,且c>0, 那么ac<bc(或     );如果a>b,且c>0,那么ac>bc(或

             


             生乙:如果a<b,且c<0, 那么ac>bc(或     );如果a>b,且c<0,那么ac<bc(或

            師:這兩條性質(zhì)中,對a、b、c有什么要求?

            生:對a、b沒什么要求,特別要注意c是正數(shù)還是負(fù)數(shù)。

            師:很好,c可以為零嗎?

            生:c不能為零。因為c為零時,任何不等式兩邊都乘以零就變成等式了。

            師:好!應(yīng)用剛才學(xué)到的基本性質(zhì),我們來看下面的例題。

            [例1]按照下列條件,寫出仍能成立的不等式:

             (1)5<9,兩邊都加上-3;

            (2)9>4,兩邊都減去10;

            (3)-5<3,兩邊都乘以4;

            (4)14>-8,兩邊都除以-2。

            解 (1)根據(jù)不等式基本性質(zhì)1,在不等式59的兩邊都加上-3,不等號的方向不變,所以

                   5+(-3)<9+(-3),

                      2<6

            (2)根據(jù)不等式基本性質(zhì)1,得

            9-10>4-10

                   -1>-6

            (3)根據(jù)不等式基本性質(zhì)2,得

                   -5×4<3×4

                   -20<12

            (4)根據(jù)不等式基本性質(zhì)3,得

                    14÷(-2)<(-8)÷(-2)

                    -7<4

            [例2]設(shè)a>b,用不等號連結(jié)下列各題中的兩式:

            (1)a-3與b-3;(2)2a與2b;(3)-a與-b.

            師:哪一位同學(xué)來做這題?解題時,要講清一步的理由。

            生甲:因為a>b,兩邊都減去3,由不等式的基本性質(zhì)1,得

            a-3>b-3.

            師:很好,大家都是這樣做的嗎?

            生乙:我是這樣做的,因為a>b,兩邊都加上(-3),由基本性質(zhì)1,得

            a-3>b-3.

            師:好!這兩位同學(xué)從不同的角度來分析題目,都得到了正確的結(jié)論。

            生丙:因為a>b,2>0,由基本性質(zhì)2,得2a>2b。

            生丁:因為a>b,-1>0,由基本性質(zhì)3,得-a>-b。

            師:下面我們來看一組較復(fù)雜的問題,請大家都來開動腦筋,認(rèn)真審題,仔細(xì)分析。[例3]判斷以下各題的結(jié)論是否正確,并說明都理由:

            (1)如果a>b,且c>0,那么ac>bd;

            (2)如果a>b,那么ac2>bc2;

            (3)如果ac2>bc2,那么a>b;

            (4) 如果a>b,那么a-b>0;

            (5)如果ax>b,且a≠0,那么x<     ;

            (6)如果a+b>a;

             

            生甲:(1)不對,當(dāng)c=d≤0時,ac>bd不成立。

            生乙:(2)也不對,因為c2是一個非負(fù)數(shù),當(dāng)c=0時,ac2>bc2不成立。

            生丙:(3)對,因為ac2>bc2成立,則c2一定大于零,根據(jù)不等式基本性質(zhì)2,得a>b出。

            (4)對,根據(jù)不等式基本性質(zhì),由a>b,兩邊減去b得a-b>0。

            (5)不對,當(dāng)a<0時,根據(jù)不等式基本性質(zhì)3,得 。

            (6)不對,因為當(dāng)b<0時,根據(jù)不等式基本性質(zhì)1,得a+b<a;而當(dāng)b=0時,則有a+b=a。

            師:同學(xué)們回答得很好。今天我們學(xué)習(xí)了不等式的基本性質(zhì),我們不僅要理解這三條性質(zhì),還要能靈活運(yùn)用。         

            課外做以下作業(yè):略。

             

            教案說明

            (1)       不等式的基本性質(zhì)的教學(xué),是分成兩個階段進(jìn)行的。在初中階段,對不等式的基本性質(zhì),并不作證明,只引導(dǎo)學(xué)生用試驗的方法,歸納出三條基本性質(zhì)。通過試驗,由特殊到一般,由具體到抽象,這是一種認(rèn)識事物規(guī)律的重要方法?茖W(xué)上的許多發(fā)現(xiàn),大多離不開試驗和觀察。大數(shù)學(xué)家歐拉說過:“數(shù)學(xué)這門科學(xué),需要觀察,也需要試驗!蓖ㄟ^教學(xué)培養(yǎng)學(xué)生掌握由試驗發(fā)現(xiàn)規(guī)律的方法,具有重要的意義。當(dāng)然通過幾個特殊的試驗,就得出一般的結(jié)論,是不嚴(yán)密的。但對初中學(xué)生來說,初次接觸不等式,是不能要求那么嚴(yán)密的。

            (2)       不等式的基本性質(zhì)的教學(xué),還應(yīng)采用對比的方法。學(xué)生已學(xué)過等式和等式的性質(zhì),為了便于和加深對不等式基本性質(zhì)的理解,在教學(xué)過程(adivasplayground.com)中,應(yīng)將不等式的性質(zhì)與等式的性質(zhì)加以比較:強(qiáng)調(diào)等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個數(shù),所得到的仍是等式,這個數(shù)可以是正數(shù)、負(fù)數(shù)或零;而在不等式的兩邊都加上或減去,都乘以或除以(除數(shù)不能為零)同一個數(shù),當(dāng)這個數(shù)是正數(shù)、負(fù)數(shù)或零時,對不等式的方向,有什么不同的影響。通過這樣的對比,不但可以復(fù)習(xí)已學(xué)過的等式有關(guān)知識,便于引入新課,而且也有利于掌握不等式的基本性質(zhì)。對比的方法,也是學(xué)習(xí)數(shù)學(xué)的一種重要方法。

            (3)       在應(yīng)用不等式的基本性質(zhì)對不等式進(jìn)行變形時,學(xué)生對不等式兩邊是具體數(shù),判定大小關(guān)系比較容易。因為這實際上是有理數(shù)大小的比較。對于不等式兩邊是含字母的代數(shù)式時,根據(jù)題給的條件,運(yùn)用不等式基本性質(zhì)判別大小關(guān)系或不等號方向,就比較困難。因為它比較抽象,特別是在運(yùn)用不等式的基本性質(zhì)2和性質(zhì)3時,學(xué)生必須考慮不等式兩邊同乘(或同除)的這個用字母表示的數(shù)的符號是什么,或者還要對這個用字母表示的數(shù),按正數(shù)、負(fù)數(shù)或零三種情況加以討論。在教學(xué)過程(adivasplayground.com)中,對于這類題目,采用討論法是比較好的。因為在討論時,學(xué)生可以充分發(fā)表各種見解。對于正確的見解,教師可以讓學(xué)生說出解題的依據(jù);對于錯誤的見解,教師可以進(jìn)行啟發(fā)引導(dǎo),發(fā)動學(xué)生自己找出錯誤的原因,自己修正見解。這樣,有利于發(fā)現(xiàn)問題,有的放矢地解決問題,有利于深化對不等式基本性質(zhì)的認(rèn)識。


            【數(shù)學(xué)教案-不等式基本性質(zhì)】相關(guān)文章:

            比的基本性質(zhì)數(shù)學(xué)教案06-09

            分?jǐn)?shù)的基本性質(zhì)數(shù)學(xué)教案02-09

            比例的意義和基本性質(zhì)的數(shù)學(xué)教案02-08

            不等式的性質(zhì)教學(xué)反思05-18

            比例的意義和基本性質(zhì)的數(shù)學(xué)教案4篇02-08

            不等式的性質(zhì)教學(xué)反思(14篇)02-23

            不等式的性質(zhì)教學(xué)反思12篇03-27

            不等式的性質(zhì)教學(xué)反思14篇01-22

            基本不等式教學(xué)反思03-17

            《比的基本性質(zhì)》教學(xué)反思03-12