- 相關(guān)推薦
一元二次方程根與系數(shù)的關(guān)系 —— 初中數(shù)學(xué)第四冊(cè)教案
一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2=
根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點(diǎn)、難點(diǎn)
一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
(三)教學(xué)目標(biāo)
1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。
2、能力目標(biāo):通過韋達(dá)定理的教學(xué)過程,使學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展推理能力,能有條理地、清晰地闡述自己的觀點(diǎn),進(jìn)一步培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。
3、情感目標(biāo):通過情境教學(xué)過程,激發(fā)學(xué)生的求知欲望,培養(yǎng)學(xué)生積極學(xué)習(xí)數(shù)學(xué)的態(tài)度。體驗(yàn)數(shù)學(xué)活動(dòng)中充滿著探索與創(chuàng)造,體驗(yàn)數(shù)學(xué)活動(dòng)中的成功感,建立自信心。
二、設(shè)計(jì)理念
根據(jù)教材內(nèi)容和本人研究的課題《初中數(shù)學(xué)問題引探教學(xué)實(shí)驗(yàn)研究》,在教學(xué)中滲透新課標(biāo)的精神,注重過程數(shù)學(xué),注重創(chuàng)新教學(xué),注重問題意識(shí),關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗(yàn),讓學(xué)生主動(dòng)參與學(xué)習(xí)活動(dòng),主動(dòng)探索并獲取知識(shí),教師是組織者、引導(dǎo)者、參與者。
三、教法與學(xué)法
(一)教法
1、充分以學(xué)生為主體進(jìn)行教學(xué),讓學(xué)生多實(shí)踐,從實(shí)踐中反思過程,讓學(xué)生經(jīng)歷韋達(dá)定理的發(fā)生發(fā)展過程,并從中體驗(yàn)成功的樂趣。
2、采用“實(shí)踐(練習(xí))——觀察——發(fā)現(xiàn)——猜想——證明”的過程教學(xué)。引導(dǎo)學(xué)生發(fā)現(xiàn)問題,師生共同解決問題。
3、分小組討論交流,多渠道信息反饋。
4、問題引探,啟發(fā)誘導(dǎo),進(jìn)行創(chuàng)新教學(xué)。
(二)學(xué)法指導(dǎo)
1、引導(dǎo)學(xué)生實(shí)踐、觀察、發(fā)現(xiàn)問題、猜想并推理。
2、指導(dǎo)學(xué)生掌握思考問題的方法及解決問題的途徑。
3、指導(dǎo)學(xué)生熟練掌握根與系數(shù)的關(guān)系,并將應(yīng)用問題和規(guī)律歸類。
四、課時(shí)劃分及教學(xué)過程
(一)課時(shí)劃分
共分3課時(shí)
第一課時(shí)
1、根與系數(shù)的關(guān)系。
2、根與系數(shù)的關(guān)系的應(yīng)用。
(1)求已知方程的兩根的平方和、倒數(shù)和、兩根差。
第二課時(shí)
1、已知兩數(shù)求作新方程。
2、由已知兩根和與積的值或式子,求字母的值。
第三課時(shí)
方程判別式、根與系數(shù)的關(guān)系的綜合應(yīng)用。
第一課時(shí) 一元二次方程根與系數(shù)的關(guān)系(1)
一、教學(xué)目標(biāo)
1、理解掌握一元二次方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a、b、c之間的關(guān)系。
2、能根據(jù)根與系數(shù)的關(guān)系式和已知一個(gè)根的條件下,求出方程的另一根,以及方程中的未知數(shù)。
3、會(huì)求已知方程的兩根的倒數(shù)和與平方和、兩根的差。
4、在推導(dǎo)過程中,培養(yǎng)學(xué)生“觀察——發(fā)現(xiàn)——猜想——證明”的研究問題的思想與方法。
二、重難點(diǎn)
根與系數(shù)的關(guān)系是重點(diǎn),由于式子的抽象性,兩根之和等于一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)的相反數(shù)中的符號(hào)是學(xué)生理解和掌握的難點(diǎn)。
三、教學(xué)過程
(一)問題引探
問題1.在方程ax2+bx+c=0中,a的取值決定什么?b2-4ac的取值呢?同學(xué)們可知道a、b、c的取值與一元二次方程ax2+bx+c=0的根還有其它關(guān)系?今天我們進(jìn)一步研究一元二次方程的這種關(guān)系。
問題2.解方程x2-5x+6=0,并先指出a、b、c各是多少,然后再解方程,計(jì)算兩根的和與積,你能發(fā)現(xiàn)什么結(jié)論(現(xiàn)象)?
問題3.解下列方程:
(1)2x2+5x+3=0 (2)3x2-2x-2=0
并根據(jù)問題2和以上的求解填寫下表
請(qǐng)觀察上表,你能發(fā)現(xiàn)兩根之和、兩根之積與方程的系數(shù)之間有什么關(guān)系嗎?
問題4.請(qǐng)根據(jù)以上的觀察發(fā)現(xiàn)進(jìn)一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2與a、b、c之間的關(guān)系:____________.
問題5.你能證明上面的猜想嗎?請(qǐng)證明,并用文字語言敘述說明。
分小組討論以上的問題,并作出推理證明。
若方程ax2+bx+c=0(a≠0)的兩根為x1=
x1+x2=
x1 x2=
=
即:如果ax2+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=
由此得出一元二次方程的根與系數(shù)的關(guān)系;還可以讓學(xué)生用自己的語言表述這種關(guān)系,來加深理解和記憶。
這個(gè)關(guān)系是一個(gè)法國數(shù)學(xué)家韋達(dá)發(fā)現(xiàn)的,所以也稱之為韋達(dá)定理。
問題6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用嗎?(引導(dǎo)學(xué)生反思性小結(jié))
①二次項(xiàng)系數(shù)a是否為零,決定著方程是否為二次方程;
②當(dāng)a≠0時(shí),b=0,a、c異號(hào),方程兩根互為相反數(shù);
③當(dāng)a≠0時(shí),△=b2-4ac可判定根的情況;
④當(dāng)a≠0,b2-4ac≥0時(shí),x1+x2=
⑤當(dāng)a≠0,c=0時(shí),方程有一根為0。
說明:1、本設(shè)計(jì)采用“實(shí)踐——觀察——發(fā)現(xiàn)——猜想——證明”的過程,使學(xué)生既動(dòng)手又動(dòng)腦,且又動(dòng)口,教師引導(dǎo)啟發(fā),避免注入式地講授一元二次方程根與系數(shù)的關(guān)系,體現(xiàn)學(xué)生的主體學(xué)習(xí)特性,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。
2、本設(shè)計(jì)遵循由特殊到一般,從實(shí)踐到理論(即從感性認(rèn)識(shí)上升到理性認(rèn)識(shí))的認(rèn)知規(guī)律。
3、本設(shè)計(jì)注重了學(xué)生的反思過程,使學(xué)生將知識(shí)系統(tǒng)化、格式化。
(二)嘗試發(fā)展
試一試:根據(jù)根與系數(shù)的關(guān)系寫出下列方程的兩根之和與兩根之積(方程兩根為x1,x2、k是常數(shù))
(1)2x2-3x+1=0 x1+x2= ________ x1x2= _________
(2)3x2+5x=0 x1+x2= ________ x1x2= __________
(3)5x2+x-2=0 x1+x2= _________ x1x2= __________
(4)5x2+kx-6=0 x1+x2= _________ x1x2= __________
(此試一試作為鞏固知識(shí)而用)
嘗試題1、已知方程6x2+kx-5=0的一個(gè)根為,求它的另一個(gè)根及k的值。
組織學(xué)生自己分析解決,然后一學(xué)生演板,其余學(xué)生在草稿本上練習(xí)。
學(xué)生練習(xí):P32 2。
嘗試題2、利用根與系數(shù)的關(guān)系,求一元二次方程2x2-3x-1=0的兩個(gè)根的(1)平方和,(2)倒數(shù)和。
討論:解上面問題的思路是什么?
得出:x12+ x22=( x1+x2)2-2 x1x2;
(三)拓展創(chuàng)新
1、在嘗試2中能否求(x1-x2)的值?2、已知實(shí)數(shù)滿足關(guān)系式a2-5a+6=0,b2-5b+6=0,且a≠b,能否求a+b與ab的值?
說明:1、“試一試”是引導(dǎo)學(xué)生及時(shí)鞏固本節(jié)所學(xué)的新知“根與系數(shù)的關(guān)系”,其中第(3)小題是培養(yǎng)學(xué)生思維嚴(yán)謹(jǐn)性和批判性;第(4)小題是起過渡作用設(shè)計(jì)。
2、嘗試題1、2讓學(xué)生討論完成或獨(dú)立完成,可以看書完成,其系數(shù)與例題有別。
3、“拓展創(chuàng)新”中是培養(yǎng)學(xué)生思維的發(fā)散性教學(xué)設(shè)計(jì),也是開放性教學(xué),使有的學(xué)生的奇異思維得到發(fā)展。
(四)歸納小結(jié)本課主要研究了什么?1、方程的根是由系數(shù)決定的。2、a≠0時(shí),方程ax2+bx+c=0是一元二次方程。3、a≠0,且b2-4ac≥0時(shí),方程ax2+bx+c=0的根為x1、2=
(1)已知一根求另一根及k的值;(2)求有關(guān)代數(shù)式的值。
(五)布置作業(yè)
P33A 1、2 B 1(1)
練習(xí):1.已知三角形的兩邊長(zhǎng)a、b是方程x2-kx+12=0的兩個(gè),等腰三角形的另一條邊c=4,求這個(gè)等腰三角形的周長(zhǎng)。
2、已知關(guān)于x的方程x2-2mx+
(1) 求征這個(gè)方程有兩個(gè)不相等實(shí)數(shù)根.
(2) 若方程的兩個(gè)實(shí)數(shù)根差的絕對(duì)值是8,并且等腰三角形的面積是12,求這個(gè)三角形的內(nèi)切圓的面積.
3、 已知二次函數(shù)y=x2+2ax-2b+1和y=-x2+(a—3)x+b2-1的圖象都經(jīng)過x軸上兩個(gè)不同的點(diǎn) ,求這兩個(gè)函數(shù)的解析式.
【一元二次方程根與系數(shù)的關(guān)系 —— 初中數(shù)學(xué)第四冊(cè)教案】相關(guān)文章:
初中數(shù)學(xué)一元二次方程根與系數(shù)關(guān)系教案12-29
《一元二次方程》數(shù)學(xué)教學(xué)反思06-07
《一元二次方程》教學(xué)反思08-22
一元二次方程教學(xué)反思04-04
《一元二次方程》教學(xué)反思11-10
九年級(jí)數(shù)學(xué)教案《實(shí)際問題與一元二次方程》08-22
解一元二次方程教學(xué)反思04-01
一元二次方程的解法教學(xué)反思04-04
一元二次方程的概念教學(xué)反思04-07