亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            八年級數(shù)學(xué)教案

            時間:2022-08-22 02:00:55 八年級數(shù)學(xué)教案 我要投稿

            八年級數(shù)學(xué)教案錦集七篇

              作為一名老師,就不得不需要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家整理的八年級數(shù)學(xué)教案7篇,歡迎大家借鑒與參考,希望對大家有所幫助。

            八年級數(shù)學(xué)教案錦集七篇

            八年級數(shù)學(xué)教案 篇1

              一、教學(xué)目的

              1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.

              2.使學(xué)生會用描點法畫出簡單函數(shù)的圖象.

              二、教學(xué)重點、難點

              重點:1.理解與認(rèn)識函數(shù)圖象的意義.

              2.培養(yǎng)學(xué)生的看圖、識圖能力.

              難點:在畫圖的三個步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對應(yīng)值問題.

              三、教學(xué)過程

              復(fù)習(xí)提問

              1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

              2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

              3.說出下列各點所在象限或坐標(biāo)軸:

              新課

              1.畫函數(shù)圖象的方法是描點法.其步驟:

              (1)列表.要注意適當(dāng)選取自變量與函數(shù)的對應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

              一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對應(yīng)值列出表來.

              (2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點.

              (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

              一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標(biāo)系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).

              2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.

              小結(jié)

              本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.

              練習(xí)

              ①選用課本練習(xí)(前一節(jié)已作:列表、描點,本節(jié)要求連線)

              ②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象.

              作業(yè)

              選用課本習(xí)題.

              四、教學(xué)注意問題

              1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的.一個變量隨另一個變量的變化而變化就更有形象而直觀的認(rèn)識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識函數(shù)的本質(zhì)特征.

              2.注意充分調(diào)動學(xué)生自己動手畫圖的積極性.

              3.認(rèn)識到由于計算器和計算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識圖的能力.

            八年級數(shù)學(xué)教案 篇2

              教學(xué)目標(biāo):

              1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

              2.了解開方與乘方互為逆運(yùn)算,會用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

              教學(xué)重點:

              算術(shù)平方根的概念。

              教學(xué)難點:

              根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

              教學(xué)過程

              一、情境導(dǎo)入

              請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

              這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

              二、導(dǎo)入新課:

              1、提出問題:(書P68頁的問題)

              你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)

              這個問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.

              一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

              也就是,在等式 =a (x0)中,規(guī)定x = .

              2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

              3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

              建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。

              4、例1 求下列各數(shù)的算術(shù)平方根:

              (1)100;(2)1;(3) ;(4)0.0001

              三、練習(xí)

              P69練習(xí) 1、2

              四、探究:(課本第69頁)

              怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

              方法1:課本中的方法,略;

              方法2:

              可還有其他方法,鼓勵學(xué)生探究。

              問題:這個大正方形的邊長應(yīng)該是多少呢?

              大正方形的邊長是 ,表示2的.算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

              建議學(xué)生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

              五、小結(jié):

              1、這節(jié)課學(xué)習(xí)了什么呢?

              2、算術(shù)平方根的具體意義是怎么樣的?

              3、怎樣求一個正數(shù)的算術(shù)平方根

              六、課外作業(yè):

              P75習(xí)題13.1活動第1、2、3題

            八年級數(shù)學(xué)教案 篇3

              1.展示生活中一些平行四邊形的實際應(yīng)用圖片(推拉門,活動衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

              2.思考:拿一個活動的平行四邊形教具,輕輕拉動一個點,觀察不管怎么拉,它還是一個平行四邊形嗎?為什么?(動畫演示拉動過程如圖)

              3.再次演示平行四邊形的移動過程,當(dāng)移動到一個角是直角時停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長方形)引出本課題及矩形定義.

              矩形定義:有一個角是直角的平行四邊形叫做矩形(通常也叫長方形).

              矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

              【探究】在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上(作出對角線),拉動一對不相鄰的頂點,改變平行四邊形的形狀.

             、匐S著∠α的變化,兩條對角線的長度分別是怎樣變化的?

              ②當(dāng)∠α是直角時,平行四邊形變成矩形,此時它的`其他內(nèi)角是什么樣的角?它的兩條對角線的長度有什么關(guān)系?

              操作,思考、交流、歸納后得到矩形的性質(zhì).

              矩形性質(zhì)1 矩形的四個角都是直角.

              矩形性質(zhì)2 矩形的對角線相等.

              如圖,在矩形ABCD中,AC、BD相交于點O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

              例習(xí)題分析

              例1(教材P104例1)已知:如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=4cm,求矩形對角線的長.

              分析:因為矩形是特殊的平行四邊形,所以它具有對角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個特性和已知,可得△OAB是等邊三角形,因此對角線的長度可求.

              解:∵ 四邊形ABCD是矩形,

              ∴ AC與BD相等且互相平分.

              ∴ OA=OB.

              又∠AOB=60°,

              ∴△OAB是等邊三角形.

              ∴矩形的對角線長AC=BD=2OA=2×4=8(cm).

              例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長8cm,對角線比AD邊長4cm.求AD的長及點A到BD的距離AE的長.

              分析:(1)因為矩形四個角都是直角,因此矩形中的計算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計算,這是幾何計算題中常用的方法

            八年級數(shù)學(xué)教案 篇4

              一、學(xué)習(xí)目標(biāo):

              1、會推導(dǎo)兩數(shù)差的平方公式,會用式子表示及用文字語言敘述;

              2、會運(yùn)用兩數(shù)差的平方公式進(jìn)行計算。

              二、學(xué)習(xí)過程:

              請同學(xué)們快速閱讀課本第27—28頁的`內(nèi)容,并完成下面的練習(xí)題:

             。ㄒ唬┨剿

              1、計算: (a - b) =

              方法一: 方法二:

              方法三:

              2、兩數(shù)差的平方用式子表示為_________________________;

              用文字語言敘述為___________________________ 。

              3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?

             。ǘ┈F(xiàn)學(xué)現(xiàn)用

              利用兩數(shù)差的平方公式計算:

              1、(3 - a) 2、 (2a -1) 3、(3y-x)

              4、(2x – 4y) 5、( 3a - )

             。ㄈ┖献鞴リP(guān)

              靈活運(yùn)用兩數(shù)差的平方公式計算:

              1、(999) 2、( a – b – c )

              3、(a + 1) -(a-1)

              (四)達(dá)標(biāo)訓(xùn)練

              1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

              A、a -2ab + 4b B、a -4b

              C、a +4b D、 a - 4ab +4b

              2、填空:

              (1)9x + + 16y = (4y - 3x )

              (2) ( ) = m - 8m + 16

              2、計算:

             。 a - b) ( x -2y )

              3、有一邊長為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?

              (四)提升

              1、本節(jié)課你學(xué)到了什么?

              2、已知a – b = 1,a + b = 25,求ab 的值

            八年級數(shù)學(xué)教案 篇5

              知識結(jié)構(gòu):

              重點與難點分析:

              本節(jié)內(nèi)容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

              本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,經(jīng);煜,幫助學(xué)生認(rèn)識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字?jǐn)⑹鲱}也是難點之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識點的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

              教法建議:

              本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:

              (1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

              學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。

              (2)采用“類比”的學(xué)習(xí)方法,獲取知識。

              由性質(zhì)定理的學(xué)習(xí),我們得到了幾個推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c撥引導(dǎo)。

              (3)總結(jié),形成知識結(jié)構(gòu)

              為了使學(xué)生對本節(jié)課有一個完整的認(rèn)識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個三角形是等邊三角形?

              一.教學(xué)目標(biāo):

              1.使學(xué)生掌握等腰三角形的判定定理及其推論;

              2.掌握等腰三角形判定定理的運(yùn)用;

              3.通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的能力;

              4.通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的`感受;

              5.通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.

              二.教學(xué)重點:等腰三角形的判定定理

              三.教學(xué)難點:性質(zhì)與判定的區(qū)別

              四.教學(xué)用具:直尺,微機(jī)

              五.教學(xué)方法:以學(xué)生為主體的討論探索法

              六.教學(xué)過程:

              1、新課背景知識復(fù)習(xí)

              (1)請同學(xué)們說出互逆命題和互逆定理的概念

              估計學(xué)生能用自己的語言說出,這里重點復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。

              (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?

              啟發(fā)學(xué)生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

              1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

              (簡稱“等角對等邊”).

              由學(xué)生說出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法.

              已知:如圖,△ABC中,∠B=∠C.

              求證:AB=AC.

              教師可引導(dǎo)學(xué)生分析:

              聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

              注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

              (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

              (3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

              2.推論1:三個角都相等的三角形是等邊三角形.

              推論2:有一個角等于60°的等腰三角形是等邊三角形.

              要讓學(xué)生自己推證這兩條推論.

              小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

              證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

              3.應(yīng)用舉例

              例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

              分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時,常?紤]應(yīng)用外角的兩個特性①它與相鄰的內(nèi)角互補(bǔ);②它等于與它不相鄰的兩個內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

              已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

              求證:AB=AC.

              證明:(略)由學(xué)生板演即可.

              補(bǔ)充例題:(投影展示)

              1.已知:如圖,AB=AD,∠B=∠D.

              求證:CB=CD.

              分析:解具體問題時要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

              證明:連結(jié)BD,在 中, (已知)

              (等邊對等角)

              (已知)

              即

              (等教對等邊)

              小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.

              2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

              分析:對于三個線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

              證明: DE//BC(已知)

              ,

              BE=DE,同理DF=CF.

              EF=DE-DF

              EF=BE-CF

              小結(jié):

              (1)等腰三角形判定定理及推論.

              (2)等腰三角形和等邊三角形的證法.

              七.練習(xí)

              教材 P.75中1、2、3.

              八.作業(yè)

              教材 P.83 中 1.1)、2)、3);2、3、4、5.

              九.板書設(shè)計

            八年級數(shù)學(xué)教案 篇6

              1、教材分析

              (1)知識結(jié)構(gòu)

              (2)重點、難點分析

              本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).

              本節(jié)內(nèi)容的難點是定理及逆定理的'關(guān)系. 垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反. 學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點.

              2、 教法建議

              本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式. 提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納. 教師的作用在于組織、點撥、引導(dǎo),促進(jìn)學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人. 具體說明如下:

              (1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

              學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”. 然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié). 最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理. 這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.

              (2)采用“類比”的學(xué)習(xí)方法,獲取逆定理

              線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.

              (3) 通過問題的解決,讓學(xué)生學(xué)會從不同角度分析問題、解決問題;讓學(xué)生學(xué)會引申、變更問題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力.

            八年級數(shù)學(xué)教案 篇7

              一、課堂引入

              1.什么叫做平行四邊形?什么叫做矩形?

              2.矩形有哪些性質(zhì)?

              3.矩形與平行四邊形有什么共同之處?有什么不同之處?

              4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

              通過討論得到矩形的判定方法.

              矩形判定方法1:對角錢相等的平行四邊形是矩形.

              矩形判定方法2:有三個角是直角的四邊形是矩形.

             。ㄖ赋觯号卸ㄒ粋四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

              二、例習(xí)題分析

              例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么?

              (1)有一個角是直角的四邊形是矩形;(×)

             。2)有四個角是直角的四邊形是矩形;(√)

              (3)四個角都相等的四邊形是矩形;(√)

             。4)對角線相等的四邊形是矩形;(×)

             。5)對角線相等且互相垂直的四邊形是矩形;(×)

              (6)對角線互相平分且相等的四邊形是矩形;(√)

             。7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

              (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

             。9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

              指出:

             。╨)所給四邊形添加的條件不滿足三個的'肯定不是矩形;

             。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

              例2(補(bǔ)充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

              分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

              解:∵ 四邊形ABCD是平行四邊形,

              ∴AO=AC,BO=BD.

              ∵ AO=BO,

              ∴ AC=BD.

              ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

              在Rt△ABC中,

              ∵ AB=4cm,AC=2AO=8cm,

              ∴BC=(cm).

              例3(補(bǔ)充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

              分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

            【八年級數(shù)學(xué)教案】相關(guān)文章:

            八年級的數(shù)學(xué)教案12-14

            八年級數(shù)學(xué)教案06-18

            八年級數(shù)學(xué)教案【熱門】12-03

            【精】八年級數(shù)學(xué)教案12-04

            八年級數(shù)學(xué)教案【精】12-04

            八年級數(shù)學(xué)教案【薦】12-06

            【推薦】八年級數(shù)學(xué)教案12-05

            八年級數(shù)學(xué)教案【推薦】12-04

            【熱】八年級數(shù)學(xué)教案12-07

            八年級下冊數(shù)學(xué)教案01-01