亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            八年級數(shù)學(xué)教案

            時間:2022-09-05 07:59:59 八年級數(shù)學(xué)教案 我要投稿

            有關(guān)八年級數(shù)學(xué)教案范文錦集八篇

              作為一位不辭辛勞的人民教師,就難以避免地要準(zhǔn)備教案,借助教案可以更好地組織教學(xué)活動。那么什么樣的教案才是好的呢?下面是小編精心整理的八年級數(shù)學(xué)教案8篇,希望能夠幫助到大家。

            有關(guān)八年級數(shù)學(xué)教案范文錦集八篇

            八年級數(shù)學(xué)教案 篇1

              單元(章)主題第三章 直棱柱任課教師與班級

              本課(節(jié))課題3.1 認(rèn)識直棱柱第 1 課時 / 共 課時

              教學(xué)目標(biāo)(含重點、難點)及

              設(shè)置依據(jù)教學(xué)目標(biāo)

              1、了解多面體、直棱柱的有關(guān)概念.

              2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.

              3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.

              教學(xué)重點與難點

              教學(xué)重點:直棱柱的有關(guān)概念.

              教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

              教學(xué)準(zhǔn)備每個學(xué)生準(zhǔn)備一個幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長方體、立方體模型

              教 學(xué) 過 程

              內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)

              一、創(chuàng)設(shè)情景,引入新課

              師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

              析:學(xué)生很容易回答出更多的答案。

              師:(繼續(xù)補充)有許多著名的建筑,像古埃及的.金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

              二、合作交流,探求新知

              1.多面體、棱、頂點概念:

              師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?

              析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點

              2.合作交流

              師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

              學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描

              述其特征。)

              師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。

              學(xué)生活動:分小組討論。

              說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

              師:請大家找出與長方體,立方體類似的物體或模型。

              析:舉出實例。(找出區(qū)別)

              師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

              有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

              側(cè)面都是長方形含正方形。

              長方體和正方體都是直四棱柱。

              3.反饋鞏固

              完成“做一做”

              析:由第(3)小題可以得到:

              直棱柱的相鄰兩條側(cè)棱互相平行且相等。

              4.學(xué)以至用

              出示例題。(先請學(xué)生單獨考慮,再作講解)

              析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)

              最后完成例題中的“想一想”

              5.鞏固練習(xí)(學(xué)生練習(xí))

              完成“課內(nèi)練習(xí)”

              三、小結(jié)回顧,反思提高

              師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?

              合作交流后得到:重點直棱柱的有關(guān)概念。

              直棱柱有以下特征:

              有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

              側(cè)面都是長方形含正方形。

              例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

              板書設(shè)計

              作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)

            八年級數(shù)學(xué)教案 篇2

              菱形

              學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點):

              1.經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習(xí)慣;

              2.運用菱形的識別方法進行有關(guān)推理.

              補充例題:

              例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

              例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.

              四邊形AFCE是菱形嗎?說明理由.

              例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的'交點

              (1)試說明四邊形AECG是平行四邊形;

              (2)若AB=4cm,BC=3cm,求線段EF的長;

              (3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時,四邊形AECG是菱形.

              課后續(xù)助:

              一、填空題

              1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

              2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

              且DE∥BA,DF∥ CA

              (1)要使四邊形AFDE是菱形,則要增加條件______________________

              (2)要使四邊形AFDE是矩形,則要增加條件______________________

              二、解答題

              1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

              2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

              (1) AC,BD互相垂直嗎?為什么?

              (2) 四邊形ABCD是菱形 嗎?

              3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

              4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

              ⑴求證:ABF≌

             、迫魧⒄郫B的圖形恢復(fù)原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

            八年級數(shù)學(xué)教案 篇3

              教學(xué)目標(biāo):

              知識與技能目標(biāo):

              1.掌握矩形的概念、性質(zhì)和判別條件.

              2.提高對矩形的性質(zhì)和判別在實際生活中的應(yīng)用能力.

              過程與方法目標(biāo):

              1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說理的基本方法.

              2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想.

              情感與態(tài)度目標(biāo):

              1.在操作活動過程中,加深對矩形的的認(rèn)識,并以此激發(fā)學(xué)生的探索精神.2.通過對矩形的探索學(xué)習(xí),體會它的內(nèi)在美和應(yīng)用美.

              教學(xué)重點:矩形的性質(zhì)和常用判別方法的理解和掌握.

              教學(xué)難點:矩形的性質(zhì)和常用判別方法的綜合應(yīng)用.

              教學(xué)方法:分析啟發(fā)法

              教具準(zhǔn):像框,平行四邊形框架教具,多媒體課件.

              教學(xué)過程設(shè)計:

              一.情境導(dǎo)入:

              演示平行四邊形活動框架,引入課題.

              二.講授新課:

              1.歸納矩形的定義:

              問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學(xué)生思考、回答.)

              結(jié)論:有一個內(nèi)角是直角的平行四邊形是矩形.

              八年級數(shù)學(xué)上冊教案2.探究矩形的性質(zhì):

             。1).問題:像框除了“有一個內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.)

              結(jié)論:矩形的四個角都是直角.

             。2).探索矩形對角線的性質(zhì):

              讓學(xué)生進行如下操作后,思考以下問題:(幻燈片展示)

              在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.

             、.隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

              ②.當(dāng)∠α是銳角時,兩條對角線的長度有什么關(guān)系?當(dāng)∠α是鈍角時呢?

             、.當(dāng)∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關(guān)系?

             。▽W(xué)生操作,思考、交流、歸納.)

              結(jié)論:矩形的兩條對角線相等.

              (3).議一議:(展示問題,引導(dǎo)學(xué)生討論解決.)

             、.矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.

              ②.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?

             。4).歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會矩形的“對稱美”.)

              矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.

              例解:(性質(zhì)的運用,滲透矩形對角線的“化歸”功能.)

              如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4

              厘米.求BD與AD的長.

             。ㄒ龑(dǎo)學(xué)生分析、解答.)

              探索矩形的判別條件:(由修理桌子引出)

             。1).想一想:(學(xué)生討論、交流、共同學(xué)習(xí))

              對角線相等的平行四邊形是怎樣的`四邊形?為什么?

              結(jié)論:對角線相等的平行四邊形是矩形.

             。ɡ碛煽捎蓭熒餐治,然后用幻燈片展示完整過程.)

             。2).歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納)

              有一個內(nèi)角是直角的平行四邊形是矩形.

              對角線相等的平行四邊形是矩形.

              三.課堂練習(xí):(出示P98隨堂練習(xí)題,學(xué)生思考、解答.)

              四.新課小結(jié):

              通過本節(jié)課的學(xué)習(xí),你有什么收獲?

             。◣熒餐瑥闹R與思想方法兩方面小結(jié).)

              五.作業(yè)設(shè)計:P99習(xí)題4.6第1、2、3題.

              板書設(shè)計:

              4.矩形

              矩形的定義:

              矩形的性質(zhì):

              前面知識的小系統(tǒng)圖示:

              三.矩形的判別條件:

              例1

              課后反思:在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計算也學(xué)會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決?偟目磥磉@節(jié)課學(xué)生掌握的還不錯。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。

            八年級數(shù)學(xué)教案 篇4

              一、教學(xué)目的

              1.使學(xué)生進一步理解自變量的取值范圍和函數(shù)值的意義.

              2.使學(xué)生會用描點法畫出簡單函數(shù)的圖象.

              二、教學(xué)重點、難點

              重點:1.理解與認(rèn)識函數(shù)圖象的意義.

              2.培養(yǎng)學(xué)生的看圖、識圖能力.

              難點:在畫圖的三個步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對應(yīng)值問題.

              三、教學(xué)過程

              復(fù)習(xí)提問

              1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

              2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

              3.說出下列各點所在象限或坐標(biāo)軸:

              新課

              1.畫函數(shù)圖象的方法是描點法.其步驟:

              (1)列表.要注意適當(dāng)選取自變量與函數(shù)的對應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

              一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的'對應(yīng)值列出表來.

              (2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點.

              (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

              一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標(biāo)系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).

              2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.

              小結(jié)

              本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.

              練習(xí)

             、龠x用課本練習(xí)(前一節(jié)已作:列表、描點,本節(jié)要求連線)

             、谘a充題:畫出函數(shù)y=5x-2的圖象.

              作業(yè)

              選用課本習(xí)題.

              四、教學(xué)注意問題

              1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認(rèn)識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識函數(shù)的本質(zhì)特征.

              2.注意充分調(diào)動學(xué)生自己動手畫圖的積極性.

              3.認(rèn)識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識圖的能力.

            八年級數(shù)學(xué)教案 篇5

              一、回顧交流,合作學(xué)習(xí)

              【活動方略】

              活動設(shè)計:教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進入復(fù)習(xí)軌道.然后進行小組匯報,匯報時可借助投影儀,要求學(xué)生上臺匯報,最后教師歸納.

              【問題探究1】(投影顯示)

              飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

              思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的'長.(3000千米)

              【活動方略】

              教師活動:操作投影儀,引導(dǎo)學(xué)生解決問題,請兩位學(xué)生上臺演示,然后講評.

              學(xué)生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

              【問題探究2】(投影顯示)

              一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

              思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

              AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

              【活動方略】

              教師活動:操作投影儀,關(guān)注學(xué)生的思維,請兩位學(xué)生上講臺演示之后再評講.

              學(xué)生活動:思考后,完成“問題探究2”,小結(jié)方法.

              解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

              ∴△ABD為直角三角形,∠A=90°.

              在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

              ∴△BDC是直角三角形,∠CDB=90°

              因此這個零件符合要求.

              【問題探究3】

              甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠(yuǎn)?

              思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

              【活動方略】

              教師活動:操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請兩位學(xué)生上講臺“板演”.

              學(xué)生活動:課堂練習(xí),與同伴交流或舉手爭取上臺演示

            八年級數(shù)學(xué)教案 篇6

               一、學(xué)習(xí)目標(biāo)及重、難點:

              1、了解方差的定義和計算公式。

              2、理解方差概念的產(chǎn)生和形成的過程。

              3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

              重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

              難點:理解方差公式

              二、自主學(xué)習(xí):

              (一)知識我先懂:

              方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

              我們用它們的平均數(shù),表示這組數(shù)據(jù)的`方差:即用

              來表示。

              給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。

              (二)自主檢測小練習(xí):

              1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。

              2、甲、乙兩組數(shù)據(jù)如下:

              甲組:10 9 11 8 12 13 10 7;

              乙組:7 8 9 10 11 12 11 12.

              分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.

              三、新課講解:

              引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

              甲:9、10、 10、13、7、13、10、8、11、8;

              乙:8、13、12、11、10、12、7、7、10、10;

              問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )

              (2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )

              歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

              我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。

              (一)例題講解:

              例1、 段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、

              測試次數(shù) 第1次 第2次 第3次 第4次 第5次

              段巍 13 14 13 12 13

              金志強 10 13 16 14 12

              給力提示:先求平均數(shù),在利用公式求解方差。

              (二)小試身手

              1、.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

              甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

              經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定

              去參加比賽。

              1、求下列數(shù)據(jù)的眾數(shù):

              (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

              2、8年級一班46個同學(xué)中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學(xué)生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?

              四、課堂小結(jié)

              方差公式:

              給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。

              每課一首詩:求方差,有公式;先平均,再求差;

              求平方,再平均;所得數(shù),是方差。

              五、課堂檢測:

              1、小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

              小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

              小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

              如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

              六、課后作業(yè):必做題:教材141頁 練習(xí)1、2 選做題:練習(xí)冊對應(yīng)部分習(xí)題

              七、學(xué)習(xí)小札記:

              寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

            八年級數(shù)學(xué)教案 篇7

              一、教學(xué)目標(biāo)

              1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;

              2.使學(xué)生能夠求出分式有意義的條件;

              3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運用類比轉(zhuǎn)化的思想方法解決問題的能力;

              4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認(rèn)識.

              二、重點、難點、疑點及解決辦法

              1.教學(xué)重點和難點 明確分式的分母不為零.

              2.疑點及解決辦法 通過類比分?jǐn)?shù)的意義,加強對分式意義的理解.

              三、教學(xué)過程

              【新課引入】

              前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學(xué)分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗,可猜想到分式)

              【新課】

              1.分式的定義

              (1)由學(xué)生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

              用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

              (2)由學(xué)生舉幾個分式的例子.

              (3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.

             、俜帜钢泻凶帜.

             、谌缤?jǐn)?shù)一樣,分式的分母不能為零.

              (4)問:何時分式的值為零?[以(2)中學(xué)生舉出的分式為例進行討論]

              2.有理式的分類

              請學(xué)生類比有理數(shù)的.分類為有理式分類:

              例1 當(dāng)取何值時,下列分式有意義?

              (1);

              解:由分母得.

              ∴當(dāng)時,原分式有意義.

              (2);

              解:由分母得.

              ∴當(dāng)時,原分式有意義.

              (3);

              解:∵恒成立,

              ∴取一切實數(shù)時,原分式都有意義.

              (4).

              解:由分母得.

              ∴當(dāng)且時,原分式有意義.

              思考:若把題目要求改為:“當(dāng)取何值時下列分式無意義?”該怎樣做?

              例2 當(dāng)取何值時,下列分式的值為零?

              (1);

              解:由分子得.

              而當(dāng)時,分母.

              ∴當(dāng)時,原分式值為零.

              小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

              (2);

              解:由分子得.

              而當(dāng)時,分母,分式無意義.

              當(dāng)時,分母.

              ∴當(dāng)時,原分式值為零.

              (3);

              解:由分子得.

              而當(dāng)時,分母.

              當(dāng)時,分母.

              ∴當(dāng)或時,原分式值都為零.

              (4).

              解:由分子得.

              而當(dāng)時,,分式無意義.

              ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

              (四)總結(jié)、擴展

              1.分式與分?jǐn)?shù)的區(qū)別.

              2.分式何時有意義?

              3.分式何時值為零?

              (五)隨堂練習(xí)

              1.填空題:

              (1)當(dāng)時,分式的值為零

              (2)當(dāng)時,分式的值為零

              (3)當(dāng)時,分式的值為零

              2.教材P55中1、2、3.

              八、布置作業(yè)

              教材P56中A組3、4;B組(1)、(2)、(3).

              九、板書設(shè)計

              課題 例1

              1.定義例2

              2.有理式分類

            八年級數(shù)學(xué)教案 篇8

              一、學(xué)生起點分析

              學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?

              反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中

              可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時的引導(dǎo)。

              二、學(xué)習(xí)任務(wù)分析

              本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

              并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學(xué)目標(biāo):

              ● 知識與技能目標(biāo)

              1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

              2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

              ● 過程與方法目標(biāo)

              1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;

              2.經(jīng)歷從實驗到驗證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

              ● 情感與態(tài)度目標(biāo)

              1.體驗生活中的數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

              2.在探索過程中體驗成功的喜悅,樹立學(xué)習(xí)的自信心。

              教學(xué)重點

              理解勾股定理逆定理的具體內(nèi)容。

              三、教法學(xué)法

              1.教學(xué)方法:實驗猜想歸納論證

              本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學(xué)結(jié)論已有一定的體驗

              但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個方面對學(xué)生進行引導(dǎo):

              (1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;

              (2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;

              (3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

              2.課前準(zhǔn)備

              教具:教材、電腦、多媒體課件。

              學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

              四、教學(xué)過程設(shè)計

              本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

              登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

              第一環(huán)節(jié):情境引入

              內(nèi)容:

              情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?

              2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

              意圖:

              通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

              效果:

              從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

              第二環(huán)節(jié):合作探究

              內(nèi)容1:探究

              下面有三組數(shù),分別是一個三角形的.三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

              1.這三組數(shù)都滿足 嗎?

              2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

              意圖:

              通過學(xué)生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結(jié)論;在活動中體驗出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

              效果:

              經(jīng)過學(xué)生充分討論后,匯總各小組實驗結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

              從上面的分組實驗很容易得出如下結(jié)論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              內(nèi)容2:說理

              提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認(rèn)為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

              意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時明晰結(jié)論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              滿足 的三個正整數(shù),稱為勾股數(shù)。

              注意事項:為了讓學(xué)生確認(rèn)該結(jié)論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個直觀的認(rèn)識。

              活動3:反思總結(jié)

              提問:

              1.同學(xué)們還能找出哪些勾股數(shù)呢?

              2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

              3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

              4.通過今天同學(xué)們合作探究,你能體驗出一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

              意圖:進一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系

              第三環(huán)節(jié):小試牛刀

              內(nèi)容:

              1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

             、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

              解答:①②

              2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

              A 250 B 150 C 200 D 不能確定

              解答:B

              3.如圖1:在 中, 于 , ,則 是( )

              A 等腰三角形 B 銳角三角形

              C 直角三角形 D 鈍角三角形

              解答:C

              4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)

              得到的三角形是( )

              A 直角三角形 B 銳角三角形

              C 鈍角三角形 D 不能確定

              解答:A

              意圖:

              通過練習(xí),加強對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用

              效果

              每題都要求學(xué)生獨立完成(5分鐘),并指出各題分別用了哪些知識。

              第四環(huán)節(jié):登高望遠(yuǎn)

              內(nèi)容:

              1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應(yīng)是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

              解答:符合要求 , 又 ,

              2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

              解答:由題意畫出相應(yīng)的圖形

              AB=240海里,BC=70海里,,AC=250海里;在△ABC中

              =(250+240)(250-240)

              =4900= = 即 △ABC是Rt△

              答:船轉(zhuǎn)彎后,是沿正西方向航行的。

              意圖:

              利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

              效果:

              學(xué)生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形( ),以便于計算。

              第五環(huán)節(jié):鞏固提高

              內(nèi)容:

              1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

              解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

              2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

              圖4 圖5

              解答:④⑤是直角三角形,①②③⑥不是直角三角形

              意圖:

              第一題考查學(xué)生充分利用所學(xué)知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進行計算,從而解決問題。

              效果:

              學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

              第六環(huán)節(jié):交流小結(jié)

              內(nèi)容:

              師生相互交流總結(jié)出:

              1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

              2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形, 便于計算。

              意圖:

              鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。

              效果:

              學(xué)生暢所欲言自己的切身感受與實際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應(yīng)用。

              第七環(huán)節(jié):布置作業(yè)

              課本習(xí)題1.4第1,2,4題。

              五、教學(xué)反思:

              1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。

              2.注重引導(dǎo)學(xué)生積極參與實驗活動,從中體驗任何一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

              3.在利用今天所學(xué)知識解決實際問題時,引導(dǎo)學(xué)生善于對公式變形,便于簡便計算。

              4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進一步關(guān)注。

              5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實際情況做適當(dāng)調(diào)整,不做要求。

              由于本班學(xué)生整體水平較高,因而本設(shè)計教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進行適當(dāng)?shù)膭h減或調(diào)整。

              附:板書設(shè)計

              能得到直角三角形嗎

              情景引入 小試牛刀: 登高望遠(yuǎn)

            【八年級數(shù)學(xué)教案】相關(guān)文章:

            八年級的數(shù)學(xué)教案12-14

            八年級數(shù)學(xué)教案06-18

            初中八年級數(shù)學(xué)教案11-03

            八年級上冊數(shù)學(xué)教案11-09

            人教版八年級數(shù)學(xué)教案11-04

            【熱】八年級數(shù)學(xué)教案12-07

            八年級數(shù)學(xué)教案【薦】12-06

            八年級數(shù)學(xué)教案【推薦】12-04

            【推薦】八年級數(shù)學(xué)教案12-05

            【精】八年級數(shù)學(xué)教案12-04