亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

            八年級數(shù)學教案

            時間:2022-09-08 18:47:56 八年級數(shù)學教案 我要投稿

            關(guān)于八年級數(shù)學教案合集八篇

              作為一位兢兢業(yè)業(yè)的人民教師,往往需要進行教案編寫工作,借助教案可以更好地組織教學活動。來參考自己需要的教案吧!以下是小編為大家整理的八年級數(shù)學教案8篇,僅供參考,希望能夠幫助到大家。

            關(guān)于八年級數(shù)學教案合集八篇

            八年級數(shù)學教案 篇1

              第一步:情景創(chuàng)設(shè)

              乒乓球的標準直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結(jié)果如下(單位:mm):

              A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

              B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

              你認為哪廠生產(chǎn)的乒乓球的直徑與標準的誤差更小呢?

              (1)請你算一算它們的平均數(shù)和極差。

             。2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標準?

              今天我們一起來探索這個問題。

              探索活動

              通過計算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的波動情況不敏感。讓我們一起來做下列的數(shù)學活動

              算一算

              把所有差相加,把所有差取絕對值相加,把這些差的平方相加。

              想一想

              你認為哪種方法更能明顯反映數(shù)據(jù)的波動情況?

              第二步:講授新知:

              (一)方差

              定義:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用

              來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

              意義:用來衡量一批數(shù)據(jù)的波動大小

              在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定

              歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動大小

             。3)方差主要應(yīng)用在平均數(shù)相等或接近時

              (4)方差大波動大,方差小波動小,一般選波動小的

              方差的簡便公式:

              推導:以3個數(shù)為例

             。ǘ藴什睿

              方差的算術(shù)平方根,即④

              并把它叫做這組數(shù)據(jù)的標準差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的`量.

              注意:波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

            八年級數(shù)學教案 篇2

              教材分析

              本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學學習中具有重要的意義。本章內(nèi)容建立在已經(jīng)學習了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎(chǔ)上,而本節(jié)課的知識是學習本章的基礎(chǔ),為后續(xù)章節(jié)的學習作鋪墊,因此,學得好壞直接關(guān)乎到后續(xù)章節(jié)的學習效果。

              學情分析

              本節(jié)課知識是學習整章的基礎(chǔ),因此,教學的好壞直接影響了后續(xù)章節(jié)的學習。學生在學習本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數(shù)冪的乘法的運算性質(zhì)的過程是一個由特殊到一般的認識過程,并且注意導出這一性質(zhì)的每一步的根據(jù)。

              從學生做練習和作業(yè)來看,大部分學生都已經(jīng)掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

              教學目標

              1、知識與技能:

              掌握同底數(shù)冪乘法的.運算性質(zhì),能熟練運用性質(zhì)進行同底數(shù)冪乘法運算。

              2、過程與方法:

             。1)通過同底數(shù)冪乘法性質(zhì)的推導過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;

              (2)通過性質(zhì)運用幫助學生理解字母表達式所代表的數(shù)量關(guān)系,進一步積累選擇適當?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經(jīng)驗。

              3、情感態(tài)度與價值觀:

             。1)通過引例問題情境的創(chuàng)設(shè),誘發(fā)學生的求知欲,進一步認識數(shù)學與生活的密切聯(lián)系;

             。2)通過性質(zhì)的推導體會“特殊。

            八年級數(shù)學教案 篇3

              教學目標

              一、教學知識點:

              1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).

              二、能力訓練要求:

              1.通過具體實例認識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.

              2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).

              三、情感與價值觀要求

              1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.

              2.通過學習使學生能用數(shù)學的眼光看待生活中的有關(guān)問題,進一步發(fā)展學生的數(shù)學觀.

              教學重點:旋轉(zhuǎn)的基本性質(zhì).

              教學難點:探索旋轉(zhuǎn)的基本性質(zhì).

              教學方法:

              1、遵循學生是學習的主人的原則,在為學生創(chuàng)造大量實例的基礎(chǔ)上,引導學生自主思考、交流、討論、歸納、學習。

              2、采用多媒體課件輔助教學。

              教學過程:

              一.巧設(shè)情景問題,引入課題

              日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?

              1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的.

              2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.

              3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

              4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).

              二.講授新課

              在數(shù)學中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.

              議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.

              (2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的位置,點B旋轉(zhuǎn)到點E的位置.

              (3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.

              (4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.

              (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

              看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的'位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應(yīng)點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?

              答:因為O是旋轉(zhuǎn)中心,點A與點D是對應(yīng)點,點B與點E是對應(yīng)點,且OA=OD,OB=OE,所以可以知道:對應(yīng)點與旋轉(zhuǎn)中心所連的線段的長度是相等的.

              因為點A與點D、點B與點E是對應(yīng)點,且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角是互相相等的.

              由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.

             。劾1](課本68頁例1)

             。蹘熒参觯萁(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針所轉(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.

              解:(見課本68頁)

              書上68頁做一做

              三.課堂練習

              課本P69隨堂練習.

              1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.

              四.課時小結(jié)

              五.課后作業(yè):課本P69習題3.4 1、2、3.

              六.活動與探究

              1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.

              結(jié)果:旋轉(zhuǎn)現(xiàn)象為:

              整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

              整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.

              整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

              2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?

              過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學生仔細觀察圖形,分析圖形,找出關(guān)系.

              結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.

              整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.

              整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

              板書設(shè)計:

              教學反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養(yǎng)學生的空間想象能力。

            八年級數(shù)學教案 篇4

              教學目標:

              1、掌握一次函數(shù)解析式的特點及意義

              2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

              3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律

              教學重點:

              1、 一次函數(shù)解析式特點

              2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

              教學難點:

              1、一次函數(shù)與正比例函數(shù)關(guān)系

              2、根據(jù)已知信息寫出一次函數(shù)的表達式。

              教學過程:

             、瘢岢鰡栴},創(chuàng)設(shè)情境

              問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.

              分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

              s=570-95t.

              說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.

              問題2 小張準備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.

              分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的'函數(shù)關(guān)系式為:y=50+12x.

              問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?

             、颍畬胄抡n

              上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱

              y是x的正比例函數(shù)。

              例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

             、賧=x-6;②y=2x;③y=;④y=7-x x8

              A、①②③B、①③④ C、①②③④ D、②③④

              例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

              (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);

              (2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);

              (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

              (4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).

              (5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;

             。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

             。7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

              (2)L=2b+16,L是b的一次函數(shù).

              (3)y=150-5x,y是x的一次函數(shù).

              (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

             。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

             。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

             。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

              例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

              分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

              解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

              若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

              例4 已知y與x-3成正比例,當x=4時,y=3.

              (1)寫出y與x之間的函數(shù)關(guān)系式;

              (2)y與x之間是什么函數(shù)關(guān)系;

              (3)求x=2.5時,y的值.

              解 (1)因為 y與x-3成正比例,所以y=k(x-3).

              又因為x=4時,y=3,所以3= k(4-3),解得k=3,

              所以y=3(x-3)=3x-9.

              (2) y是x的一次函數(shù).

              (3)當x=2.5時,y=3×2.5=7.5.

              1. 2

              例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).

              (1)當此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.

              (2)當此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

              分析 (1)當此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.

              (2)當此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.

              解 (1) y=30-12x.(0≤x≤2.5)

              (2) y=12x-30.(2.5≤x≤6.5)

              例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內(nèi),只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

              分析 因為在只打開進油管的8分鐘內(nèi)、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.

              解 在第一階段:y=3x(0≤x≤8);

              在第二階段:y=16+x(8≤x≤16);

              在第三階段:y=-2x+88(24≤x≤44).

             、螅S堂練習

              根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

              2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應(yīng)繳水費y元。(1)寫出每月用水量不

              超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

             、簦n時小結(jié)

              1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

              2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達式。

             、酰n后作業(yè)

              1、已知y-3與x成正比例,且x=2時,y=7

              (1)寫出y與x之間的函數(shù)關(guān)系.

              (2)y與x之間是什么函數(shù)關(guān)系.

              (3)計算y=-4時x的值.

              2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.

              3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

              4.今年植樹節(jié),同學們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學們中學畢業(yè)時這些樹約有多高.

              5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

            八年級數(shù)學教案 篇5

              知識目標:理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)

              能力目標:會用變化的量描述事物

              情感目標:回用運動的觀點觀察事物,分析事物

              重點:函數(shù)的概念

              難點:函數(shù)的概念

              教學媒體:多媒體電腦,計算器

              教學說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學會確定自變量的取值范圍

              教學設(shè)計:

              引入:

              信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?

              新課:

              問題:(1)如圖是某日的氣溫變化圖。

              ① 這張圖告訴我們哪些信息?

             、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

              (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應(yīng)的數(shù):

             、 這表告訴我們哪些信息?

             、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?

              一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。

              范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

              (5) 長方形的寬一定時,其長與面積;

              (6) 等腰三角形的'底邊長與面積;

              (7) 某人的年齡與身高;

              活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

              思考:自變量是否可以任意取值

              例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

              (1) 寫出表示y與x的函數(shù)關(guān)系式.

              (2) 指出自變量x的取值范圍.

              (3) 汽車行駛200km時,油箱中還有多少汽油?

              解:(1)y=50-0.1x

              (2)0500

              (3)x=200,y=30

              活動2:練習教材9頁練習

              小結(jié):(1)函數(shù)概念

              (2)自變量,函數(shù)值

              (3)自變量的取值范圍確定

              作業(yè):18頁:2,3,4題

            八年級數(shù)學教案 篇6

              教學目標:

              (1)理解通分的意義,理解最簡公分母的意義;

              (2)掌握分式的通分法則,能熟練掌握通分運算。

              教學重點:分式通分的理解和掌握。

              教學難點:分式通分中最簡公分母的確定。

              教學工具:投影儀

              教學方法:啟發(fā)式、討論式

              教學過程:

              (一)引入

              (1)如何計算:

              由此讓學生復(fù)習分數(shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。

              (2)如何計算:

              (3)何計算:

              引導學生思考,猜想如何求解?

              (二)新課

              1、類比分數(shù)的通分得到分式的通分:

              把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

              注意:通分保證

              (1)各分式與原分式相等;

              (2)各分式分母相等。

              2.通分的依據(jù):分式的基本性質(zhì).

              3.通分的關(guān)鍵:確定幾個分式的最簡公分母.

              通常取各分母的所有因式的最高次冪的'積作最簡公分母,這樣的公分母叫做最簡公分母.

              根據(jù)分式通分和最簡公分母的定義,將分式通分:

              最簡公分母為:

              然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當?shù)恼剑垢鞣质降姆帜付蓟癁橥ǚ秩缦拢簒xx

              通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。

              例1 通分:xxx

              分析:讓學生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分數(shù)的通分找最小公倍數(shù)。

              解:∵ 最簡公分母是12xy2,

              小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).

              解:∵最簡公分母是10a2b2c2,

              由學生歸納最簡公分母的思路。

              分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。

            八年級數(shù)學教案 篇7

              一、教學目標:

              1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

              2、會求一組數(shù)據(jù)的極差.

              二、重點、難點和難點的突破方法

              1、重點:會求一組數(shù)據(jù)的極差.

              2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.

              三、課堂引入:

              下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

              從表中你能得到哪些信息?

              比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

              經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

              這是不是說,兩個時段的氣溫情況沒有什么差異呢?

              根據(jù)兩段時間的氣溫情況可繪成的折線圖.

              觀察一下,它們有區(qū)別嗎?說說你觀察得到的.結(jié)果.

              用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

              四、例習題分析

              本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習題分析

              問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統(tǒng)計知識首先應(yīng)回憶復(fù)習已學知識.問題3答案并不唯一,合理即可。

            八年級數(shù)學教案 篇8

              一、回顧交流,合作學習

              【活動方略】

              活動設(shè)計:教師先將學生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進行反思,教師巡視,并且不斷引導學生進入復(fù)習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.

              【問題探究1】(投影顯示)

              飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

              思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)

              【活動方略】

              教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.

              學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

              【問題探究2】(投影顯示)

              一個零件的.形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

              思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

              AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

              【活動方略】

              教師活動:操作投影儀,關(guān)注學生的思維,請兩位學生上講臺演示之后再評講.

              學生活動:思考后,完成“問題探究2”,小結(jié)方法.

              解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

              ∴△ABD為直角三角形,∠A=90°.

              在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

              ∴△BDC是直角三角形,∠CDB=90°

              因此這個零件符合要求.

              【問題探究3】

              甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?

              思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

              【活動方略】

              教師活動:操作投影儀,巡視、關(guān)注學生訓練,并請兩位學生上講臺“板演”.

              學生活動:課堂練習,與同伴交流或舉手爭取上臺演示

            【八年級數(shù)學教案】相關(guān)文章:

            八年級的數(shù)學教案12-14

            八年級數(shù)學教案06-18

            初中八年級數(shù)學教案11-03

            八年級上冊數(shù)學教案11-09

            人教版八年級數(shù)學教案11-04

            【熱】八年級數(shù)學教案12-07

            八年級數(shù)學教案【薦】12-06

            八年級數(shù)學教案【推薦】12-04

            【推薦】八年級數(shù)學教案12-05

            【精】八年級數(shù)學教案12-04