亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

            八年級(jí)數(shù)學(xué)教案

            時(shí)間:2022-04-15 02:16:00 八年級(jí)數(shù)學(xué)教案 我要投稿

            八年級(jí)數(shù)學(xué)教案匯總9篇

              作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常要開(kāi)展教案準(zhǔn)備工作,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。我們?cè)撛趺慈懡贪改兀肯旅媸切【幨占淼陌四昙?jí)數(shù)學(xué)教案9篇,僅供參考,大家一起來(lái)看看吧。

            八年級(jí)數(shù)學(xué)教案匯總9篇

            八年級(jí)數(shù)學(xué)教案 篇1

              一、創(chuàng)設(shè)情境

              1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫出一次函數(shù)的圖象?

              (一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象).

              2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)哪一點(diǎn)的直線?

              (正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線).

              3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的'坐標(biāo)有什么特征?

              4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過(guò)觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

              二、探究歸納

              1.在畫函數(shù)的圖象時(shí),通過(guò)列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

              2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.

              分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

              解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

              過(guò)點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

              所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

              三、實(shí)踐應(yīng)用

              例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.

              分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

              解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

              例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

              分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

            八年級(jí)數(shù)學(xué)教案 篇2

              課題:三角形全等的判定(三)

              教學(xué)目標(biāo):

              1、知識(shí)目標(biāo):

              (1)掌握已知三邊畫三角形的方法;

              (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;

              (3)會(huì)添加較明顯的輔助線.

              2、能力目標(biāo):

              (1)通過(guò)尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

              (2)通過(guò)公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

              3、情感目標(biāo):

              (1)在公理的形成過(guò)程中滲透:實(shí)驗(yàn)、觀察、歸納;

              (2)通過(guò)變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.

              教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過(guò)的各種判定方法判定三角形全等。

              教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚(gè)三角形全等。

              教學(xué)用具:直尺,微機(jī)

              教學(xué)方法:自學(xué)輔導(dǎo)

              教學(xué)過(guò)程:

              1、新課引入

              投影顯示

              問(wèn)題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對(duì)窗框測(cè)量哪幾個(gè)數(shù)據(jù)?如果你手頭沒(méi)有測(cè)量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

              這個(gè)問(wèn)題讓學(xué)生議論后回答,他們的答案或許只是一種感覺(jué)。于是教師要引導(dǎo)學(xué)生,抓住問(wèn)題的本質(zhì):三角形的三個(gè)元素――三條邊。

              2、公理的獲得

              問(wèn):通過(guò)上面問(wèn)題的分析,滿足什么條件的兩個(gè)三角形全等?

              讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)

              公理:有三邊對(duì)應(yīng)相等的`兩個(gè)三角形全等。

              應(yīng)用格式: (略)

              強(qiáng)調(diào)說(shuō)明:

              (1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論。

              (2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)

              (3)、此公理與前面學(xué)過(guò)的公理區(qū)別與聯(lián)系

              (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。

              (5)說(shuō)明AAA與SSA不能判定三角形全等。

              3、公理的應(yīng)用

              (1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。

              例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架

              求證:AD⊥BC

              分析:(設(shè)問(wèn)程序)

              (1)要證AD⊥BC只要證什么?

              (2)要證∠1=

              只要證什么?(3)要證∠1=∠2只要證什么?

              (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

              證明:(略)

            八年級(jí)數(shù)學(xué)教案 篇3

              課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課

              【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

              【課前練習(xí)】

              1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

              2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。

              【典型例題】

              例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

              (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

              錯(cuò)答: B

              正解: C

              錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。

              例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

              (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

              錯(cuò)解 :B

              正解:D

              錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

              例3(20xx廣西中考題) 已知關(guān)于x的.一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。

              錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

              錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。

              正解: -1≤k<2且k≠

              例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。

              錯(cuò)解:由根與系數(shù)的關(guān)系得

              x1+x2= -(2m+1), x1x2=m2+1,

              ∵x12+x22=(x1+x2)2-2 x1x2

              =[-(2m+1)]2-2(m2+1)

             。2 m2+4 m-1

              又∵ x12+x22=15

              ∴ 2 m2+4 m-1=15

              ∴ m1 = -4 m2 = 2

              錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無(wú)實(shí)數(shù)根,不符合題意。

              正解:m = 2

              例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

              錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20

              ∵ △≥0

              ∴ 16 m+20≥0,

              ∴ m≥ -5/4

              又 ∵ m2-1≠0,

              ∴ m≠±1

              ∴ m的取值范圍是m≠±1且m≥ -

              錯(cuò)因剖析:此題只說(shuō)(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。

              正解:m的取值范圍是m≥-

              例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

              錯(cuò)解:∵方程有整數(shù)根,

              ∴△=9-4a>0,則a<2.25

              又∵a是非負(fù)數(shù),∴a=1或a=2

              令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

              ∴方程的整數(shù)根是x1= -1, x2= -2

              錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3

              正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

              【練習(xí)】

              練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。

              (1)求k的取值范圍;

             。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由。

              解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

              ∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

              (2)存在。

              如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。

              ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

              讀了上面的解題過(guò)程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確答案。

              解:上面解法錯(cuò)在如下兩個(gè)方面:

              (1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

             。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

              練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

              解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=

             。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4

              ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。

              又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:

              x1+x2=- >0 ;

              x1. x2=- >0 解得 :a<0

              綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。

              【小結(jié)】

              以上數(shù)例,說(shuō)明我們?cè)谇蠼庥嘘P(guān)二次方程的問(wèn)題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

              1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。

              2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。

              3、條件多面時(shí)(如例5、例6)考慮要周全。

              【布置作業(yè)】

              1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?

              2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒(méi)有實(shí)數(shù)根。

              求證:關(guān)于x的方程

             。╩-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。

              考題匯編

              1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

              2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

             。1)若方程的一個(gè)根為1,求m的值。

             。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒(méi)有,請(qǐng)說(shuō)明理由。

              3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

              4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。

            八年級(jí)數(shù)學(xué)教案 篇4

              教學(xué)任務(wù)分析

              教學(xué)目標(biāo)

              知識(shí)技能

              探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

              數(shù)學(xué)思考

              能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問(wèn)題能力和計(jì)算能力.

              解決問(wèn)題

              通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.

              情感態(tài)度

              在應(yīng)用等腰梯形的性質(zhì)的過(guò)程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).

              重點(diǎn)

              等腰梯形的性質(zhì)及其應(yīng)用.

              難點(diǎn)

              解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.

              教學(xué)流程安排

              活動(dòng)流程圖

              活動(dòng)的內(nèi)容和目的

              活動(dòng)1想一想

              活動(dòng)2說(shuō)一說(shuō)

              活動(dòng)3畫一畫

              活動(dòng)4做—做

              活動(dòng)5練一練

              活動(dòng)6理一理

              觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.

              了解梯形定義、各部分名稱及分類.

              通過(guò)畫圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.

              探究得到等腰梯形的性質(zhì).

              通過(guò)解決具體問(wèn)題,尋找解決梯形問(wèn)題的方法.

              通過(guò)整理回顧,鞏固知識(shí)、提高能力、滲透思想.

              教學(xué)過(guò)程設(shè)計(jì)

              問(wèn)題與情景

              師生行為

              設(shè)計(jì)意圖

              [活動(dòng)1]

              觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?

              演示圖片,學(xué)生欣賞.

              結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對(duì)邊平行而另一組對(duì)邊不平行.

              由現(xiàn)實(shí)中實(shí)際問(wèn)題入手,設(shè)置問(wèn)題情境,引出本課主題.通過(guò)學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.

              [活動(dòng)2]

              梯形定義 一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.

              學(xué)生根據(jù)梯形概念畫出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

              通過(guò)類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.

              問(wèn)題與情景

              師生行為

              設(shè)計(jì)意圖

              一些基本概念

             。1)(如圖):底、腰、高.

             。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

             。3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.

              學(xué)生在小學(xué)已經(jīng)對(duì)梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽(tīng)學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;

             、谏稀⑾碌椎母拍钍怯傻椎拈L(zhǎng)短來(lái)定義的,而并不是指位置來(lái)說(shuō)的.

              熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.

              [活動(dòng)3]

              畫一畫

              在下列所給圖中的每個(gè)三角形中畫一條線段,

              (1)怎樣畫才能得到一個(gè)梯形?

             。2)在哪些三角形中,能夠得到一個(gè)等腰梯形?

              在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.

              教師參與小組活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流.針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.

              本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:

             。1)學(xué)生在活動(dòng)過(guò)程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.

             。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.

             。3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見(jiàn)解,傾聽(tīng)他人的`意見(jiàn),對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.

              等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來(lái)研究.尤其是根據(jù)等腰三角形是軸對(duì)稱圖形,可得到等腰梯形是軸對(duì)稱圖形這條性質(zhì),為活動(dòng)4種開(kāi)展探究奠定了基礎(chǔ).

              問(wèn)題與情景

              師生行為

              設(shè)計(jì)意圖

              [活動(dòng)4]

              做—做

              探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問(wèn)題的思想).

              在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.

             。1)這個(gè)圖形是軸對(duì)稱圖形嗎?對(duì)稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過(guò)觀察猜想;

             。2)這個(gè)等腰梯形的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?

              學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫圖過(guò)程,觀察圖形,思考教師提出的問(wèn)題,猜想、驗(yàn)證、歸納結(jié)論.

              針對(duì)不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).

              師生共同歸納:

             、俚妊菪问禽S對(duì)稱圖形,上下底的中點(diǎn)連線是對(duì)稱軸.

             、诘妊菪蝺裳嗟龋

             、鄣妊菪瓮坏咨系膬蓚(gè)角相等.

             、艿妊菪蔚膬蓷l對(duì)角線相等.

              教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見(jiàn)的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.

              [活動(dòng)5]

              練—練

              例1 (教材P118的例1)略.

              例2 如圖,梯形ABCD中,AD∥BC,

              ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

              求CD的長(zhǎng).

              師生共同分析,尋找解決問(wèn)題的方法和策略.

              例1是等腰梯形性質(zhì)的直接運(yùn)用,請(qǐng)學(xué)生分析、解答,教師聆聽(tīng),同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).

              分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問(wèn)題.

              其方法是:平移一腰,過(guò)點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

              解:(略)

              通過(guò)題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問(wèn)題的基本思想和方法就是通過(guò)添加適當(dāng)?shù)妮o助線,把梯形問(wèn)題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問(wèn)題來(lái)解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.

              問(wèn)題與情景

              師生行為

              設(shè)計(jì)意圖

              例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

              BE⊥AC于E.

              求證:BE=CD.

              分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過(guò)點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

              證明(略)

              例2與例3這里給出的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見(jiàn)識(shí).

              [活動(dòng)6]

              1.小結(jié)

              2.布置作業(yè)

             。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長(zhǎng)和面積.

             。2)已知:如圖,

              梯形ABCD中,CD//AB,,.

              求證:AD=AB—DC.

              (3)已知,如圖,

              梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長(zhǎng)DE交CB延長(zhǎng)線于點(diǎn)F,由全等可得結(jié)論)

              師生歸納總結(jié):

              解決梯形問(wèn)題常用的方法:

             。1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);

             。2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);

             。3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);

             。4)“平移對(duì)角線”:使兩條對(duì)角線在同一個(gè)三角形中(圖4);

             。5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長(zhǎng)與下底延長(zhǎng)線交于一點(diǎn),構(gòu)成三角形(圖5).

              盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過(guò)程.

              梳理本節(jié)課應(yīng)用過(guò)的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.

              學(xué)生通過(guò)獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問(wèn)題,及時(shí)查漏補(bǔ)缺.

            八年級(jí)數(shù)學(xué)教案 篇5

              [教學(xué)目標(biāo)]

              知識(shí)與技能:

              1.會(huì)用多邊形公式進(jìn)行計(jì)算。

              2.理解多邊形外角和公式。

              過(guò)程與方法:

              經(jīng)歷探究多邊形內(nèi)角和計(jì)算方法的過(guò)程,培養(yǎng)學(xué)生的合作交流意識(shí)力.

              情感態(tài)度與價(jià)值觀:

              讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實(shí)際應(yīng)用價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。

              [教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵]

              教學(xué)重點(diǎn):多邊形的內(nèi)角和.的應(yīng)用.

              教學(xué)難點(diǎn):探索多邊形的內(nèi)角和與外角和公式過(guò)程.

              教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.

              [教學(xué)方法]

              本節(jié)課采用“探究與互動(dòng)”的教學(xué)方式,并配以真的情境來(lái)引題。

              [教學(xué)過(guò)程:]

              (一)探索多邊形的內(nèi)角和

              活動(dòng)1:判斷下列圖形,從多邊形上任取一點(diǎn)c,作對(duì)角線,判斷分成三角形的個(gè)數(shù)。

              活動(dòng)2:①?gòu)亩噙呅蔚囊粋(gè)頂點(diǎn)出發(fā),可以引多少條對(duì)角線?他們將多邊形分成多少個(gè)三角形?②總結(jié)多邊形內(nèi)角和,你會(huì)得到什么樣的結(jié)論?

              多邊形邊數(shù)分成三角形的'個(gè)數(shù)圖形

              內(nèi)角和計(jì)算規(guī)律

              三角形31180°(3-2)·180°

              四邊形4

              五邊形5

              六邊形6

              七邊形7

              。。。。。。

              n邊形n

              活動(dòng)3:把一個(gè)五邊形分成幾個(gè)三角形,還有其他的分法嗎?

              總結(jié)多邊形的內(nèi)角和公式

              一般的,從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引____條對(duì)角線,他們將n邊形分為_(kāi)___個(gè)三角形,n邊形的內(nèi)角和等于180×______。

              鞏固練習(xí):看誰(shuí)求得又快又準(zhǔn)!(搶答)

              例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?

              (點(diǎn)評(píng):四邊形的一組對(duì)角互補(bǔ),另一組對(duì)角也互補(bǔ)。)

              (二)探索多邊形的外角和

              活動(dòng)4:例2如圖,在五邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?

              分析:(1)任何一個(gè)外角同于他相鄰的內(nèi)角有什系?

              (2)五邊形的五個(gè)外角加上與他們相鄰的內(nèi)角所得總和是多少?

              (3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?

              解:五邊形的外角和=______________-五邊形的內(nèi)角和

              活動(dòng)5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結(jié)果嗎?

              也可以理解為:從多邊形的一個(gè)頂點(diǎn)A點(diǎn)出發(fā),沿多邊形的各邊走過(guò)各點(diǎn)之后回到點(diǎn)A.最后再轉(zhuǎn)回出發(fā)時(shí)的方向。由于在這個(gè)運(yùn)動(dòng)過(guò)程中身體共轉(zhuǎn)動(dòng)了一周,也就是說(shuō)所轉(zhuǎn)的各個(gè)角的和等于一個(gè)______角。所以多邊形的外角和等于_________。

              結(jié)論:多邊形的外角和=___________。

              練習(xí)1:如果一個(gè)多邊形的每一個(gè)外角等于30°,則這個(gè)多邊形的邊數(shù)是_____。

              練習(xí)2:正五邊形的每一個(gè)外角等于________,每一個(gè)內(nèi)角等于_______。

              練習(xí)3.已知一個(gè)多邊形,它的內(nèi)角和等于外角和,它是幾邊形?

              (三)小結(jié):本節(jié)課你有哪些收獲?

              (四)作業(yè):

              課本P84:習(xí)題7.3的2、6題

              附知識(shí)拓展—平面鑲嵌

              (五)隨堂練習(xí)(練一練)

              1、n邊形的內(nèi)角和等于__________,九邊形的內(nèi)角和等于___________。

              2、一個(gè)多邊形當(dāng)邊數(shù)增加1時(shí),它的內(nèi)角和增加()。

              3、已知多邊形的每個(gè)內(nèi)角都等于150°,求這個(gè)多邊形的邊數(shù)?

              4、一個(gè)多邊形從一個(gè)頂點(diǎn)可引對(duì)角線3條,這個(gè)多邊形內(nèi)角和等于()

              A:360°B:540°C:720°D:900°

              5.已知一個(gè)多邊形,它的內(nèi)角和等于外角和的2倍,求這個(gè)多邊形的邊數(shù)?

            八年級(jí)數(shù)學(xué)教案 篇6

              課時(shí)目標(biāo)

              1.掌握分式、有理式的概念。

              2.掌握分式是否有意義、分式的值是否等于零的識(shí)別方法。

              教學(xué)重點(diǎn)

              正確理解分式的意義,分式是否有意義的條件及分式的值為零的'條件。

              教學(xué)難點(diǎn):

              正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

              教學(xué)時(shí)間:一課時(shí)。

              教學(xué)用具:投影儀等。

              教學(xué)過(guò)程:

              一.復(fù)習(xí)提問(wèn)

              1.什么是整式?什么是單項(xiàng)式?什么是多項(xiàng)式?

              2.判斷下列各式中,哪些是整式?哪些不是整式?

              ①+m2 ②1+x+y2- ③ ④

             、 ⑥ ⑦

              二.新課講解:

              設(shè)問(wèn):不是整工式子中,和整式有什么區(qū)別?

              小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

              練習(xí):下列各式中,哪些是分式哪些不是?

             。1)、、(2)、(3)、(4)、(5)x2、(6)+4

              強(qiáng)調(diào):(6)+4帶有是無(wú)理式,不是整式,故不是分式。

              2.小結(jié):對(duì)整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

              練習(xí):課后練習(xí)P6練習(xí)1、2題

              設(shè)問(wèn):(讓學(xué)生看課本上P5“思考”部分,然后回答問(wèn)題。)

              例題講解:課本P5例題1

              分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

             。ò鍟忸}過(guò)程。)

              3.小結(jié):分式是否有意義的識(shí)別方法:當(dāng)分式的分母為零時(shí),分式無(wú)意義;當(dāng)分式的分母不等于零時(shí),分式有意義。

              增加例題:當(dāng)x取什么值時(shí),分式有意義?

              解:由分母x2-4=0,得x=±2。

              ∴ 當(dāng)x≠±2時(shí),分式有意義。

              設(shè)問(wèn):什么時(shí)候分式的值為零呢?

              例:

              解:當(dāng) ① 分式的值為零

            八年級(jí)數(shù)學(xué)教案 篇7

              教學(xué)建議

              1、平行線等分線段定理

              定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

              注意事項(xiàng):定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

              定理的作用:可以用來(lái)證明同一直線上的線段相等;可以等分線段。

              2、平行線等分線段定理的推論

              推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

              推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊。

              記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。

              推論的用途:(1)平分已知線段;(2)證明線段的倍分。

              重難點(diǎn)分析

              本節(jié)的重點(diǎn)是平行線等分線段定理。因?yàn)樗粌H是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

              本節(jié)的難點(diǎn)也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識(shí)和理解上有一定的難度,在加上平行線等分線段定理的.兩個(gè)推論以及各種變式,學(xué)生難免會(huì)有應(yīng)接不暇的感覺(jué),往往會(huì)有感覺(jué)新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

              教法建議

              平行線等分線段定理的引入

              生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個(gè)角度考慮:

             、?gòu)纳顚?shí)例引入,如刻度尺、作業(yè)本、柵欄、等等;

             、诳捎脝(wèn)題式引入,開(kāi)始時(shí)設(shè)計(jì)一系列與平行線等分線段定理概念相關(guān)的問(wèn)題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。

              教學(xué)設(shè)計(jì)示例

              一、教學(xué)目標(biāo)

              1、使學(xué)生掌握平行線等分線段定理及推論。

              2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。

              3、通過(guò)定理的變式圖形,進(jìn)一步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

              4、通過(guò)本節(jié)學(xué)習(xí),體會(huì)圖形語(yǔ)言和符號(hào)語(yǔ)言的和諧美

              二、教法設(shè)計(jì)

              學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

              三、重點(diǎn)、難點(diǎn)

              1、教學(xué)重點(diǎn):平行線等分線段定理

              2、教學(xué)難點(diǎn):平行線等分線段定理

              四、課時(shí)安排

              l課時(shí)

              五、教具學(xué)具

              計(jì)算機(jī)、投影儀、膠片、常用畫圖工具

              六、師生互動(dòng)活動(dòng)設(shè)計(jì)

              教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

              七、教學(xué)步驟

              【復(fù)習(xí)提問(wèn)】

              1、什么叫平行線?平行線有什么性質(zhì)。

              2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

              【引入新課】

              由學(xué)生動(dòng)手做一實(shí)驗(yàn):每個(gè)同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫一條與橫線相交的直線 ,測(cè)量它被相鄰橫線截得的線段是否也相等?

             。ㄒ龑(dǎo)學(xué)生把做實(shí)驗(yàn)的條件和得到的結(jié)論寫成一個(gè)命題,教師總結(jié),由此得到平行線等分線段定理)

              平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

              注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確。

              下面我們以三條平行線為例來(lái)證明這個(gè)定理(由學(xué)生口述已知,求證)。

              已知:如圖,直線 , 。

              求證: 。

              分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過(guò)全等三角形性質(zhì),即可得到要證的結(jié)論。

             。ㄒ龑(dǎo)學(xué)生找出另一種證法)

              分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識(shí)即可證得 。

              證明:過(guò) 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。

              ∴

              ∵ ,

              ∴

              又∵ , ,

              ∴

              ∴

              為使學(xué)生對(duì)定理加深理解和掌握,把知識(shí)學(xué)活,可讓學(xué)生認(rèn)識(shí)幾種定理的變式圖形,如圖(用計(jì)算機(jī)動(dòng)態(tài)演示)。

              引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

              推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

              再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

              推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。

              注意:推論1和推論2也都是很重要的定理,在今后的論證和計(jì)算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

              接下來(lái)講如何利用平行線等分線段定理來(lái)任意等分一條線段。

              例 已知:如圖,線段 。

              求作:線段 的五等分點(diǎn)。

              作法:①作射線 。

              ②在射線 上以任意長(zhǎng)順次截取 。

             、圻B結(jié) 。

             、苓^(guò)點(diǎn) 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 。

              、 、 、 就是所求的五等分點(diǎn)。

              (說(shuō)明略,由學(xué)生口述即可)

              【總結(jié)、擴(kuò)展】

              小結(jié):

             。╨)平行線等分線段定理及推論。

             。2)定理的證明只取三條平行線,是在較簡(jiǎn)單的情況下證明的,對(duì)于多于三條的平行線的情況,也可用同樣方法證明。

             。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

             。4)應(yīng)用定理任意等分一條線段。

              八、布置作業(yè)

              教材P188中A組2、9

              九、板書設(shè)計(jì)

              十、隨堂練習(xí)

              教材P182中1、2

            八年級(jí)數(shù)學(xué)教案 篇8

              教學(xué)目標(biāo):

              1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).

              2.掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).

              3.會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).

              教學(xué)重點(diǎn):

              掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).

              難點(diǎn):

              會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).

              情感態(tài)度與價(jià)值觀:

              通過(guò)學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來(lái)源于實(shí)踐,服務(wù)于實(shí)踐.能利用事物之間的類比性解決問(wèn)題.

              教學(xué)過(guò)程:

              一、課堂引入

              1.回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));

              2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1.

              3.你還記得1納米=10?9米,即1納米=米嗎?

              4.計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

              二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來(lái)看這條性質(zhì)是否成立. 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.

              三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來(lái)表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的`形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1.

            八年級(jí)數(shù)學(xué)教案 篇9

              教學(xué)目的

              1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

              2. 熟識(shí)等邊三角形的性質(zhì)及判定.

              2.通過(guò)例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。

              教學(xué)重點(diǎn)

              等腰三角形的性質(zhì)及其應(yīng)用。

              教學(xué)難點(diǎn)

              簡(jiǎn)潔的邏輯推理。

              教學(xué)過(guò)程

              一、復(fù)習(xí)鞏固

              1.敘述等腰三角形的性質(zhì),它是怎么得到的?

              等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱等邊對(duì)等角。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。

              等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱三線合一。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

              2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?

              二、新課

              在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

              等邊三角形具有什么性質(zhì)呢?

              1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。

              2.你能否用已知的知識(shí),通過(guò)推理得到你的猜想是正確的?

              等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。

              3.上面的'條件和結(jié)論如何敘述?

              等邊三角形的各角都相等,并且每一個(gè)角都等于60。

              等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?

              等邊三角形也稱為正三角形。

              例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。

              分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

              問(wèn)題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?

              問(wèn)題2:求1是否還有其它方法?

              三、練習(xí)鞏固

              1.判斷下列命題,對(duì)的打,錯(cuò)的打。

              a.等腰三角形的角平分線,中線和高互相重合( )

              b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60( )

              2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。

              四、小結(jié)

              由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。

              五、作業(yè)

              1.課本P127─7,9

              2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

              EOD的度數(shù)。

              (一)課本P127─1、3、4、8題.

            【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

            八年級(jí)的數(shù)學(xué)教案12-14

            八年級(jí)數(shù)學(xué)教案06-18

            初中八年級(jí)數(shù)學(xué)教案11-03

            人教版八年級(jí)數(shù)學(xué)教案11-04

            八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

            八年級(jí)的數(shù)學(xué)教案15篇12-14

            八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

            八年級(jí)數(shù)學(xué)教案人教版01-03

            八年級(jí)數(shù)學(xué)教案【熱門】12-03

            【熱門】八年級(jí)數(shù)學(xué)教案11-29