- 相關(guān)推薦
雙曲線的幾何性質(zhì)數(shù)學(xué)教案設(shè)計(jì)
作為一名優(yōu)秀的教育工作者,編寫(xiě)教案是必不可少的,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么大家知道正規(guī)的教案是怎么寫(xiě)的嗎?以下是小編精心整理的雙曲線的幾何性質(zhì)數(shù)學(xué)教案設(shè)計(jì),歡迎閱讀與收藏。
。ㄒ唬┱n時(shí)目標(biāo)
1.熟悉雙曲線的幾何性質(zhì)。
2.能理解離心率的大小對(duì)雙曲線形狀的影響。
3.能運(yùn)用雙曲線的幾何性質(zhì)或圖形特征,確定焦點(diǎn)的位置,會(huì)求雙曲線的標(biāo)準(zhǔn)方程。
(二)教學(xué)過(guò)程
[情景設(shè)置]
敘述橢圓的幾何性質(zhì),并填寫(xiě)下表:
方程
性質(zhì)
圖像(略)
范圍-a≤x≤a,-b≤y≤b
對(duì)稱(chēng)性對(duì)稱(chēng)軸、對(duì)稱(chēng)中心
頂點(diǎn)(±a,0)、(±b,0)
離心率e=(幾何意義)
。ㄈ┨剿餮芯
1.類(lèi)比橢圓的幾何性質(zhì),探討雙曲線的幾何性質(zhì):范圍、對(duì)稱(chēng)性、頂點(diǎn)、離心率。
雙曲線的實(shí)軸、虛軸、實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)及離心率的定義。
雙曲線與橢圓的幾何性質(zhì)對(duì)比如下:
方程
性質(zhì)
圖像(略)(略)
范圍-a≤x≤a,-b≤y≤bx≥a,或x≤-a,y∈R
對(duì)稱(chēng)性對(duì)稱(chēng)軸、對(duì)稱(chēng)中心對(duì)稱(chēng)軸、對(duì)稱(chēng)中心
頂點(diǎn)(±a,0)、(±b,0)(-a,0)、(a,0)
離心率0<e=<1
e=>1
下面繼續(xù)研究離心率的幾何意義:
。╝、b、c、e關(guān)系:c2=a2+b2, e=>1)
2。漸近線的發(fā)現(xiàn)與論證
根據(jù)橢圓的上述四個(gè)性質(zhì),能較為準(zhǔn)確地把 畫(huà)出來(lái)嗎?(能)
根據(jù)上述雙曲線的四個(gè)性質(zhì),能較為準(zhǔn)確地把 畫(huà)出來(lái)嗎?(不能)
通過(guò)列表描點(diǎn),能把雙曲線的頂點(diǎn)及附近的點(diǎn),比較精確地畫(huà)出來(lái),但雙曲線向何處伸展就不很清楚。
我們能較為準(zhǔn)確地畫(huà)出曲線y=,這是為什么?(因?yàn)楫?dāng)雙曲線伸向遠(yuǎn)處時(shí),它與x軸、y軸無(wú)限接近)此時(shí),x軸、y軸叫做曲線y=的漸近線。
問(wèn):雙曲線 有沒(méi)有漸近線呢?若有,又該是怎樣的直線呢?
引導(dǎo)猜想:在研究雙曲線的范圍時(shí),由雙曲線的標(biāo)準(zhǔn)方程可解出:
y=± =±
當(dāng)x無(wú)限增大時(shí), 就無(wú)限趨近于零,也就是說(shuō),這是雙曲線y=±
與直線y=± 無(wú)限接近。
這使我們猜想直線y=± 為雙曲線的漸近線。
直線y=± 恰好是過(guò)實(shí)軸端點(diǎn)A1、A2,虛軸端點(diǎn)B1、B2,作平行于坐標(biāo)軸的直線x=±a, y=±b所成的矩形的兩條對(duì)角線,那么,如何證明雙曲線上的點(diǎn)沿曲線向遠(yuǎn)處運(yùn)動(dòng)時(shí),與漸近線越來(lái)越接近呢?顯然,只要考慮第一象限即可。
證法1:如圖,設(shè)M(x0,y0)為第一象限內(nèi)雙曲線 上的仍一點(diǎn),則
y0= ,M(x0,y0)到漸近線ay-bx=0的距離為:
∣MQ∣= =
= .
點(diǎn)M向遠(yuǎn)處運(yùn)動(dòng), x0隨著增大,∣MQ∣就逐漸減小,M點(diǎn)就無(wú)限接近于 y=
故把y=± 叫做雙曲線 的漸近線。
3.離心率的幾何意義
∵e=,c>a, ∴e>1由等式c2-a2=b2,可得 ===
e越小(接近于1) 越接近于0,雙曲線開(kāi)口越。ū猹M)
e越大 越大,雙曲線開(kāi)口越大(開(kāi)闊)
4.鞏固練習(xí)
求下列雙曲線的漸近線方程,并畫(huà)出雙曲線。
①4x2-y2=4 ②4x2-y2=-4
已知雙曲線的漸近線方程為x±2y=0,分別求出過(guò)以下各點(diǎn)的雙曲線方程
、費(fèi)(4, ) ②M(4, )
[知識(shí)應(yīng)用與解題研究]
例 1 求雙曲線9y2-16x2=144的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。
例2 雙曲線型自然通風(fēng)塔的外形,是雙曲線的一部分繞其虛軸旋轉(zhuǎn)而成的曲面,如圖;它的最小半徑為12m,上口半徑為13m,下口半徑為25m,高為55m,選擇適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的方程(精確到1m)
。ㄋ模┨釤捒偨Y(jié)
1、雙曲線的幾何性質(zhì)及a、b、c、e的關(guān)系。
2、漸近線是雙曲線特有的性質(zhì),其發(fā)現(xiàn)證明蘊(yùn)含了重要的數(shù)學(xué)思想與數(shù)學(xué)方法。
3、雙曲線的幾何性質(zhì)與橢圓的幾何性質(zhì)類(lèi)似點(diǎn)和不同點(diǎn)。
【雙曲線的幾何性質(zhì)數(shù)學(xué)教案設(shè)計(jì)】相關(guān)文章:
數(shù)的整除,分?jǐn)?shù)、小數(shù)的基本性質(zhì)數(shù)學(xué)教案設(shè)計(jì)10-22
數(shù)學(xué)小數(shù)的性質(zhì)教案03-04
數(shù)學(xué)《比例的基本性質(zhì)》教案01-21
數(shù)學(xué)小數(shù)的性質(zhì)教案15篇03-04
數(shù)學(xué)小數(shù)的性質(zhì)教案(15篇)03-04
數(shù)學(xué)小數(shù)的意義和性質(zhì)教案11-11
小數(shù)性質(zhì)數(shù)學(xué)教學(xué)反思01-03