亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>初二數(shù)學(xué)優(yōu)秀教案

            初二數(shù)學(xué)優(yōu)秀教案

            時(shí)間:2022-11-24 09:17:02 八年級(jí)數(shù)學(xué)教案 我要投稿

            初二數(shù)學(xué)優(yōu)秀教案2篇

              作為一位杰出的教職工,通常會(huì)被要求編寫(xiě)教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么問(wèn)題來(lái)了,教案應(yīng)該怎么寫(xiě)?以下是小編為大家整理的初二數(shù)學(xué)優(yōu)秀教案,歡迎閱讀與收藏。

            初二數(shù)學(xué)優(yōu)秀教案2篇

            初二數(shù)學(xué)優(yōu)秀教案1

              教學(xué)目的

              1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

              2. 熟識(shí)等邊三角形的性質(zhì)及判定.

              2.通過(guò)例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。

              教學(xué)重點(diǎn):

              等腰三角形的性質(zhì)及其應(yīng)用。

              教學(xué)難點(diǎn):

              簡(jiǎn)潔的邏輯推理。

              教學(xué)過(guò)程

              一、復(fù)習(xí)鞏固

              1.敘述等腰三角形的性質(zhì),它是怎么得到的?

              等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱“等邊對(duì)等角”。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以∠B=∠C。

              等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱“三線合一”。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

              2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?

              二、新課

              在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

              等邊三角形具有什么性質(zhì)呢?

              1.請(qǐng)同學(xué)們畫(huà)一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。

              2.你能否用已知的知識(shí),通過(guò)推理得到你的'猜想是正確的?

              等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

              3.上面的條件和結(jié)論如何敘述?

              等邊三角形的各角都相等,并且每一個(gè)角都等于60°。

              等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?

              等邊三角形也稱為正三角形。

              例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30°,求∠1和∠ADC的度數(shù)。

              分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

              問(wèn)題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?

              問(wèn)題2:求∠1是否還有其它方法?

              三、練習(xí)鞏固

              1.判斷下列命題,對(duì)的打“√”,錯(cuò)的打“×”。

              a.等腰三角形的角平分線,中線和高互相重合( )

              b.有一個(gè)角是60°的等腰三角形,其它兩個(gè)內(nèi)角也為60°( )

              2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。

              3.P54練習(xí)1、2。

              四、小結(jié)

              由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。

              五、作業(yè):

              1.課本P57第7,9題。

              2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。

            初二數(shù)學(xué)優(yōu)秀教案2

              一、教學(xué)目標(biāo):

              1.經(jīng)歷觀察、發(fā)現(xiàn)、探究中心對(duì)稱圖形的有關(guān)概念和基本性質(zhì)的過(guò)程,積累一定的審美體驗(yàn)。

              2了解中心對(duì)稱圖形及其基本性質(zhì),掌握平行四邊形也是中心對(duì)稱圖形。

              二、教學(xué)重、難點(diǎn):

              理解中心對(duì)稱圖形的概念及其基本性質(zhì)。

              三、教學(xué)過(guò)程:

              (一)創(chuàng)設(shè)問(wèn)題情境

              1.以魔術(shù)創(chuàng)設(shè)問(wèn)題情境:教師通過(guò)撲克牌魔術(shù)的演示引出研究課題,激發(fā)學(xué)生探索“中心對(duì)稱圖形”的興趣。

              【魔術(shù)設(shè)計(jì)】:師取出若干張非中心對(duì)稱的撲克牌和一張是中心對(duì)稱的牌,按牌面的多數(shù)指向整理好(如上圖),然后請(qǐng)一位同學(xué)上臺(tái)任意抽出一張撲克,把這張牌旋轉(zhuǎn)180O后再插入,再請(qǐng)這位同學(xué)洗幾下,展開(kāi)撲克牌,馬上確定這位同學(xué)抽出的撲克。

              (課堂反應(yīng):學(xué)生非常安靜,目不轉(zhuǎn)睛地盯著老師做動(dòng)作。每完成一個(gè)動(dòng)作之后,學(xué)生就進(jìn)入沉思狀態(tài),接著就是小聲議論。)

              師重復(fù)以上活動(dòng)

              2次后提問(wèn):

              (1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點(diǎn)?

              (2)你能說(shuō)明為什么老師要把抽出的這張牌旋轉(zhuǎn)1800嗎?(小組討論)

              (反思:創(chuàng)設(shè)問(wèn)題情境主要在于下面幾點(diǎn)理由:(1)采取從學(xué)生最熟悉的實(shí)際問(wèn)題情境入手的方式,貼近學(xué)生的生活實(shí)際,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活,進(jìn)一步感悟到把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的訓(xùn)練,從而激發(fā)學(xué)生的求知欲。

              (2)所有新知識(shí)的學(xué)習(xí)都以對(duì)相關(guān)具體問(wèn)題情境的探索作為開(kāi)始,它們是學(xué)生了解與學(xué)習(xí)這些新知識(shí)的有效方法,同時(shí)也活躍了課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣。(

              3)通過(guò)撲克魔術(shù)創(chuàng)設(shè)問(wèn)題情境,學(xué)生獲得的答案將是豐富的。在最后交流歸納時(shí),他們感覺(jué)到,自己在活動(dòng)中“研究”的成果,對(duì)最終形成規(guī)范、正確的結(jié)論是有貢獻(xiàn)的,從而激發(fā)他們更加注意學(xué)習(xí)方式和“研究”方式。這也是對(duì)他們從事科學(xué)研究的情感態(tài)度的培養(yǎng)。學(xué)生勤于動(dòng)手、樂(lè)于探究,發(fā)展學(xué)生實(shí)踐應(yīng)用能力和創(chuàng)新精神成為可行。)

              2.教師揭示謎底。

              利用“Z+Z”課件游戲演示牌面,請(qǐng)學(xué)生找一找哪張牌旋轉(zhuǎn)

              180O后和原來(lái)牌面一樣。

              3.學(xué)生通過(guò)動(dòng)手分析上述撲克牌牌面、獨(dú)立思考、探究、合作交流等活動(dòng),得到答案:

              (1)只有一張撲克牌圖案顛倒后和原來(lái)牌面一樣。

              (2)其余撲克牌顛倒后和原來(lái)牌面不一樣,因此,老師事先按牌面的多數(shù)(少數(shù))指向整理好,把任意抽出的一張撲克牌旋轉(zhuǎn)180O后,就可以馬上在一堆撲克牌中找出它。

              (反思:本環(huán)節(jié)是在撲克魔術(shù)揭密問(wèn)題的具體背景下,通過(guò)學(xué)生自己的觀察、發(fā)現(xiàn)、總結(jié)、歸納,進(jìn)一步理解中心對(duì)稱圖形及其特點(diǎn),發(fā)展空間觀念,突出了數(shù)學(xué)課堂教學(xué)中的探索性。從而培養(yǎng)了學(xué)生觀察、概括能力,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花。)

              (二)學(xué)生分組討論、思考探究:

              1.師問(wèn):生活中有哪些圖形是與這張撲克牌一樣,旋轉(zhuǎn)180O后和原來(lái)一樣?

              生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機(jī)的雙葉螺旋槳等。

              2.你能將下列各圖分別繞其上的一點(diǎn)旋轉(zhuǎn)180O,使旋轉(zhuǎn)前后的圖形完全重合嗎?(先讓學(xué)生思考,允許有困難的學(xué)生利用 “

              Z+Z”演示其旋轉(zhuǎn)過(guò)程。)3

              .有人用“中心對(duì)稱圖形”一詞描述上面的這些現(xiàn)象,你認(rèn)為這個(gè)詞是什么含義?

              (對(duì)于抽象的概念教學(xué),要關(guān)注概念的實(shí)際背景與形成過(guò)程,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,力求讓學(xué)生采取發(fā)現(xiàn)式的學(xué)習(xí)方式,通過(guò)“想一想”、“議一議”、 “動(dòng)一動(dòng)”等多種活動(dòng)形式,幫助學(xué)生克服記憶概念的學(xué)習(xí)方式。)

              (三)教師明晰,建立模型

              1給出“中心對(duì)稱圖形”定義:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180O,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。

              2.對(duì)比軸對(duì)稱圖形與中心對(duì)稱圖形:(列出表格,加深印象)

              軸對(duì)稱圖形中心對(duì)稱圖形有一條對(duì)稱軸——直線有一個(gè)對(duì)稱中心——點(diǎn)沿對(duì)稱軸對(duì)折繞對(duì)稱中心旋轉(zhuǎn)1880O對(duì)折后與原圖形重合

              旋轉(zhuǎn)后與原圖形重合

              (四)解釋、應(yīng)用與拓廣

              1.教師用“Z+Z

              智能教育平臺(tái)”演示旋轉(zhuǎn)過(guò)程,驗(yàn)證上述圖形的中心對(duì)稱性,引導(dǎo)學(xué)生討論、探究中心對(duì)稱圖形的性質(zhì)。

              (利用計(jì)算機(jī)《Z+Z智能教育平臺(tái)》技術(shù),通過(guò)圖形旋轉(zhuǎn)給出中心對(duì)稱圖形的一個(gè)幾何解釋,目的是使學(xué)生對(duì)中心對(duì)稱圖形有一個(gè)更直觀的認(rèn)識(shí)。)

              2.探究中心對(duì)稱圖形的性質(zhì)

              板書(shū):中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。

              3.師問(wèn):怎樣找出一個(gè)中心對(duì)稱圖形的對(duì)稱中心?

              (兩組對(duì)應(yīng)點(diǎn)連結(jié)所成線段的交點(diǎn))

              4平行四邊形是中心對(duì)稱圖形嗎?若是,請(qǐng)找出其對(duì)稱中心,你怎樣驗(yàn)證呢?

              學(xué)生分組討論交流并回答。

              討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?學(xué)生分組討論交流并回答。

              討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?

              5逆向問(wèn)題:如果一個(gè)四邊形是中心對(duì)稱圖形,那么這個(gè)四邊形一定是平行四邊形嗎?

              學(xué)生討論回答。

              6你還能找出哪些多邊形是中心對(duì)稱圖形?

              (反思:合作學(xué)習(xí)是新課程改革中追求的'一種學(xué)習(xí)方法,但合作學(xué)習(xí)必須建立在學(xué)生的獨(dú)立探索的基礎(chǔ)上,否則合作學(xué)習(xí)將會(huì)流于形式,不能起到應(yīng)有的效果,所于我在上課時(shí)強(qiáng)調(diào)學(xué)生先獨(dú)立思考,再由當(dāng)天的小組長(zhǎng)組織進(jìn)行,并由當(dāng)天的記錄員記錄小組成員的活動(dòng)情況(每個(gè)小組有一張課堂合作學(xué)習(xí)參考表,見(jiàn)附錄)。)

              (五)拓展與延伸

              1中國(guó)文字豐富多彩、含義深刻,有許多是中心對(duì)稱的,你能找出幾個(gè)嗎?

              2.正六邊形的對(duì)稱中心怎樣確定?

              (六)魔術(shù)表演:

              1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉(zhuǎn)180o后,得到右圖,你知道哪一張撲克被旋轉(zhuǎn)過(guò)嗎?

              2.學(xué)生小組活動(dòng):

              以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設(shè)計(jì)魔術(shù),相互之間做游戲。

              (新教材的編寫(xiě),著重突出了用數(shù)學(xué)活動(dòng)呈現(xiàn)教學(xué)內(nèi)容,而不是以例題和習(xí)題的形式出現(xiàn)。通過(guò)多種形式的實(shí)踐活動(dòng),讓學(xué)生親歷探究與現(xiàn)實(shí)生活聯(lián)系密切的學(xué)習(xí)過(guò)程,使學(xué)生在合作中學(xué)習(xí),在競(jìng)爭(zhēng)收獲,共同分享成功的喜悅,同時(shí)能調(diào)節(jié)課堂的氣氛,培養(yǎng)學(xué)生之間的情感。只有這樣,學(xué)生的創(chuàng)新意識(shí)和動(dòng)手意識(shí)才會(huì)充分地發(fā)揮出來(lái)。)

              四、案例小結(jié)

              《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“實(shí)踐活動(dòng)是培養(yǎng)學(xué)生進(jìn)行主動(dòng)探索與合作交流的重要途徑!薄敖處煈(yīng)該充分利用學(xué)生已有的生活經(jīng)驗(yàn),隨時(shí)引導(dǎo)學(xué)生把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到生活中去,解決身邊的數(shù)學(xué)問(wèn)題,了解數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,體會(huì)學(xué)習(xí)數(shù)學(xué)的重要性!边@兩段話,正體現(xiàn)了新教材的重要變化——關(guān)注學(xué)生的生活世界,學(xué)習(xí)內(nèi)容更加貼近實(shí)際,同時(shí)強(qiáng)調(diào)了數(shù)學(xué)教學(xué)讓學(xué)生動(dòng)手實(shí)踐的重要意義和作用。

              現(xiàn)實(shí)性的生活內(nèi)容,能夠賦予數(shù)學(xué)足夠的活力和靈性。對(duì)許多學(xué)生來(lái)說(shuō),“撲克”和“游戲”是很感興趣的內(nèi)容,因此,也具有現(xiàn)實(shí)性,即回歸生活(玩撲克牌)——讓學(xué)生感知學(xué)習(xí)數(shù)學(xué)可以讓生活增添許多樂(lè)趣,同時(shí)也讓學(xué)生感知到數(shù)學(xué)就在我們身邊,學(xué)生學(xué)習(xí)的數(shù)學(xué)應(yīng)當(dāng)是生活中的數(shù)學(xué),是學(xué)生“自己身邊的數(shù)學(xué)”。這樣,數(shù)學(xué)來(lái)源于生活,又必須回歸于生活,學(xué)生就能在游戲中學(xué)得輕松愉快,整個(gè)課堂顯得生動(dòng)活潑。

            【初二數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:

            初二數(shù)學(xué)優(yōu)秀教案11-21

            初二數(shù)學(xué)優(yōu)秀教案4篇11-21

            數(shù)學(xué)初二教案11-24

            最新數(shù)學(xué)初二教案09-28

            初二數(shù)學(xué)教案11-02

            數(shù)學(xué)優(yōu)秀教案01-19

            【推薦】初二數(shù)學(xué)教案12-23

            初二數(shù)學(xué)教案【熱】12-24

            【薦】初二數(shù)學(xué)教案12-19