八年級數(shù)學(xué)教案(集合15篇)
作為一位杰出的教職工,通常需要準(zhǔn)備好一份教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案應(yīng)該怎么寫才好呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案,歡迎大家分享。
八年級數(shù)學(xué)教案1
教學(xué)目標(biāo):
知識目標(biāo):
1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會求出另一個(gè)量的值。
3、會對一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。
能力目標(biāo):
1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識現(xiàn)實(shí)世界的意識和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感目標(biāo):
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
教學(xué)重點(diǎn):
掌握函數(shù)概念。
判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
能把實(shí)際問題抽象概括為函數(shù)問題。
教學(xué)難點(diǎn):
理解函數(shù)的概念。
能把實(shí)際問題抽象概括為函數(shù)問題。
教學(xué)過程設(shè)計(jì):
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課
『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
……
『師』:當(dāng)你坐在摩天輪上時(shí),人的高度隨時(shí)在變化,那么變化是否有規(guī)律呢?
『生』:應(yīng)該有規(guī)律。因?yàn)槿穗S輪一直做圓周運(yùn)動。所以人的高度過一段時(shí)間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。
『師』:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時(shí)間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時(shí)間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的關(guān)系。
大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時(shí)間所對應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時(shí)間t,相應(yīng)的高度h確定嗎?
『生』:確定。
『師』:在這個(gè)問題中,我們研究的對象有幾個(gè)?分別是什么?
『生』:研究的對象有兩個(gè),是時(shí)間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時(shí)間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識世界。下面我們就去研究一些有關(guān)變量的問題。
二、新課學(xué)習(xí)
做一做
(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?
填寫下表:
層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個(gè)問題中的變量有幾個(gè)?分別師什么?
『生』:變量有兩個(gè),是層數(shù)與圓圈總數(shù)。
(2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗(yàn)公式,其中V表示剎車前汽車的速度(單位:千米/時(shí))
①計(jì)算當(dāng)fenbie為50,60,100時(shí),相應(yīng)的滑行距離S是多少?
、诮o定一個(gè)V值,你能求出相應(yīng)的`S值嗎?
解:略
議一議
『師』:在上面我們研究了三個(gè)問題。下面大家探討一下,在這三個(gè)問題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?
『生』:相同點(diǎn)是:這三個(gè)問題中都研究了兩個(gè)變量。
不同點(diǎn)是:在第一個(gè)問題中,是以圖象的形式表示兩個(gè)變量之間的關(guān)系;第二個(gè)問題中是以表格的形式表示兩個(gè)變量間的關(guān)系;第三個(gè)問題是以關(guān)系式來表示兩個(gè)變量間的關(guān)系的。
『師』:通過對這三個(gè)問題的研究,明確“給定其中某一個(gè)變量的值,相應(yīng)地就確定了另一個(gè)變量的值”這一共性。
函數(shù)的概念
在上面各例中,都有兩個(gè)變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個(gè)變量(因變量)的值。
一般地,在某個(gè)變化過程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
三、隨堂練習(xí)
書P152頁 隨堂練習(xí)1、2、3
四、本課小結(jié)
初步掌握函數(shù)的概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
在一個(gè)函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。
函數(shù)的三種表達(dá)式:
圖象;(2)表格;(3)關(guān)系式。
五、探究活動
為了加強(qiáng)公民的節(jié)水意識,某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過10噸時(shí),水價(jià)為每噸1.2元;超過10噸時(shí),超過的部分按每噸1.8元收費(fèi),該市某戶居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個(gè)變量是否為另一個(gè)變量的函數(shù)?
。ù鸢福篩=1.8x-6或)
六、課后作業(yè)
習(xí)題6.1
八年級數(shù)學(xué)教案2
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個(gè)定理.
(二)能力訓(xùn)練點(diǎn)
1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力.
(三)德育滲透點(diǎn)
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
(四)美育滲透點(diǎn)
通過學(xué)習(xí),體會幾何證明的'方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點(diǎn)及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時(shí),在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理).
八年級數(shù)學(xué)教案3
教學(xué)目標(biāo):
1、經(jīng)歷數(shù)據(jù)離散程度的探索過程
2、了解刻畫數(shù)據(jù)離散程度的三個(gè)量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。
教學(xué)重點(diǎn):
會計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。
教學(xué)難點(diǎn):
理解數(shù)據(jù)離散程度與三個(gè)差之間的關(guān)系。
教學(xué)準(zhǔn)備:
計(jì)算器,投影片等
教學(xué)過程:
一、創(chuàng)設(shè)情境
1、投影課本P138引例。
(通過對問題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時(shí)讓學(xué)生初步體會平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個(gè)量度極差)
2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。
二、活動與探究
如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)
問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?
2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的'差距。
3、在甲、丙兩廠中,你認(rèn)為哪個(gè)廠雞腿質(zhì)量更符合要求?為什么?
(在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個(gè)丙廠,其平均質(zhì)量和極差與甲廠相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識上的矛盾,為引出另兩個(gè)刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。
三、講解概念:
方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2
設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為
則s2= ,
而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)
從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
四、做一做
你能用計(jì)算器計(jì)算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個(gè)廠的雞腿規(guī)格更好一些?說說你是怎樣算的?
(通過對此問題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)
五、鞏固練習(xí):課本第172頁隨堂練習(xí)
六、課堂小結(jié):
1、怎樣刻畫一組數(shù)據(jù)的離散程度?
2、怎樣求方差和標(biāo)準(zhǔn)差?
七、布置作業(yè):習(xí)題5.5第1、2題。
八年級數(shù)學(xué)教案4
教學(xué)目標(biāo):
1、經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強(qiáng)對圖形欣賞的意識。
2、能按要求把所給出的圖形補(bǔ)成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計(jì)軸對稱圖形。
教學(xué)重點(diǎn):
本節(jié)課重點(diǎn)是掌握已知對稱軸L和一個(gè)點(diǎn),要畫出點(diǎn)A關(guān)于L的軸對稱點(diǎn)的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計(jì)軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計(jì)軸對稱圖形是本節(jié)課的難點(diǎn)。
教學(xué)方法:
動手實(shí)踐、討論。
教學(xué)工具:
課件
教學(xué)過程:
一、 先復(fù)習(xí)軸對稱圖形的定義,以及軸對稱的相關(guān)的性質(zhì):
1.如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個(gè)圖形叫做________________,這條直線叫做_____________
2.軸對稱的'三個(gè)重要性質(zhì)______________________________________________
_____________________________________________________________________
二、提出問題:
二、探索練習(xí):
1. 提出問題:
如圖:給出了一個(gè)圖案的一半,其中的虛線是這個(gè)圖案的對稱軸。
你能畫出這個(gè)圖案的另一半嗎?
吸引學(xué)生讓學(xué)生有一種解決難點(diǎn)的想法。
2.分析問題:
分析圖案:這個(gè)圖案是由重要六個(gè)點(diǎn)構(gòu)成的,要將這個(gè)圖案的另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個(gè)圖案中六個(gè)點(diǎn)的對應(yīng)點(diǎn)即可
問題轉(zhuǎn)化成:已知對稱軸和一個(gè)點(diǎn)A,要畫出點(diǎn)A關(guān)于L的對應(yīng)點(diǎn) ,可采用如下方法:`
在學(xué)生掌握已知一個(gè)點(diǎn)畫對應(yīng)點(diǎn)的基礎(chǔ)上,解決上述給出的問題,使學(xué)生有一條較明確的思路。
三、對所學(xué)內(nèi)容進(jìn)行鞏固練習(xí):
1. 如圖,直線L是一個(gè)軸對稱圖形的對稱軸,畫出這個(gè)軸對稱圖形的另一半。
2. 試畫出與線段AB關(guān)于直線L的線段
3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形
小 結(jié): 本節(jié)課學(xué)習(xí)了已知對稱軸L和一個(gè)點(diǎn)如何畫出它的對應(yīng)點(diǎn),以及如何補(bǔ)全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計(jì)軸對稱圖形。
教學(xué)后記:學(xué)生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計(jì)圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高
八年級數(shù)學(xué)教案5
知識目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標(biāo):會用變化的量描述事物
情感目標(biāo):回用運(yùn)動的觀點(diǎn)觀察事物,分析事物
重點(diǎn):函數(shù)的概念
難點(diǎn):函數(shù)的概念
教學(xué)媒體:多媒體電腦,計(jì)算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍
教學(xué)設(shè)計(jì):
引入:
信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
① 這張圖告訴我們哪些信息?
、 這張圖是怎樣來展示這天各時(shí)刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機(jī)上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對應(yīng)的數(shù):
、 這表告訴我們哪些信息?
、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來嗎?
一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對于x的每一個(gè)確定的值,y都有惟一確定的`值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時(shí),其長與面積;
(6) 等腰三角形的底邊長與面積;
(7) 某人的年齡與身高;
活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時(shí),油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動2:練習(xí)教材9頁練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
八年級數(shù)學(xué)教案6
【教學(xué)目標(biāo)】
知識與技能
能確定多項(xiàng)式各項(xiàng)的公因式,會用提公因式法把多項(xiàng)式分解因式.
過程與方法
使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.
情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗(yàn),體會其應(yīng)用價(jià)值.
【教學(xué)重難點(diǎn)】
重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.
難點(diǎn):正確地確定多項(xiàng)式的最大公因式.
關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
【教學(xué)過程】
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的.變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?
2.多項(xiàng)式4x2-x和xy2-yz-y呢?
請將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.
【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
教師提問:多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?
【師生共識】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用簡便的方法計(jì)算:
0.84×12+12×0.6-0.44×12.
【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學(xué)生完成例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本115頁練習(xí)第1、2、3題.
【探研時(shí)空】
利用提公因式法計(jì)算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/p>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本119頁習(xí)題14.3第1、4(1)、6題.
八年級數(shù)學(xué)教案7
總課時(shí):7課時(shí) 使用人:
備課時(shí)間:第八周 上課時(shí)間:第十周
第4課時(shí):5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識與技能
1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價(jià)值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的'圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個(gè)圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學(xué)教案8
學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。
學(xué)習(xí)難點(diǎn):認(rèn)識函數(shù),領(lǐng)會函數(shù)的意義。
【自主復(fù)習(xí)知識準(zhǔn)備】
請你舉出生活中含有兩個(gè)變量的變化過程,說明其中的常量和變量。
【自主探究知識應(yīng)用】
請看書72——74頁內(nèi)容,完成下列問題:
1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。
2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的'關(guān)系。
3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。
歸納:一般的,在一個(gè)變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
補(bǔ)充小結(jié):
(1)函數(shù)的定義:
(2)必須是一個(gè)變化過程;
(3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對它對應(yīng)。
三、鞏固與拓展:
例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。
(1)寫出表示y與x的函數(shù)關(guān)系式.
(2)指出自變量x的取值范圍.
(3) 汽車行駛200千米時(shí),油箱中還有多少汽油?
【當(dāng)堂檢測知識升華】
1、判斷下列變量之間是不是函數(shù)關(guān)系:
(1)長方形的寬一定時(shí),其長與面積;
(2)等腰三角形的底邊長與面積;
(3)某人的年齡與身高;
2、寫出下列函數(shù)的解析式.
(1)一個(gè)長方體盒子高3cm,底面是正方形,這個(gè)長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.
(2)汽車加油時(shí),加油槍的流量為10L/min.
、偃绻佑颓,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;
②如果加油時(shí),油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.
(3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.
(4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.
八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對性的設(shè)置,希望大家喜歡!
八年級數(shù)學(xué)教案9
教學(xué)目標(biāo):
1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。
2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡單的現(xiàn)象。
3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。
4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。
教學(xué)重點(diǎn):體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。
教學(xué)難點(diǎn):對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。
教學(xué)方法:歸納教學(xué)法。
教學(xué)過程:
一、知識回顧與思考
1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。
一般地對于n個(gè)數(shù)X1,……Xn把(X1+X2+…Xn)叫做這n個(gè)數(shù)的'算術(shù)平均數(shù),簡稱平均數(shù)。
如某公司要招工,測試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計(jì)入總成績,這樣計(jì)算出的成績?yōu)閿?shù)學(xué),語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項(xiàng)測試成績的權(quán)。
中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。
眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)。
如3,2,3,5,3,4中3是眾數(shù)。
2、平均數(shù)、中位數(shù)和眾數(shù)的特征:
。1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。
。2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。
。3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。
。4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當(dāng)一組數(shù)據(jù)中個(gè)別數(shù)據(jù)變動較大時(shí),適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。
3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:
算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。
4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。
利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。
二、例題講解:
例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計(jì)了這15人某月的銷售量如下:
每人銷售件數(shù) 1800 510 250 210 150 120
人數(shù) 113532
(1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);
。2)假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售額定為平均數(shù),你認(rèn)為是否合理,為什么?如不合理,請你制定一個(gè)較合理的銷售定額,并說明理由。
例2,某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績分別按40%、20%、40%的比例計(jì)入學(xué)期總評成績,小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評成績是多少?
三、課堂練習(xí):復(fù)習(xí)題A組
四、小結(jié):
1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。
2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。
五、作業(yè):復(fù)習(xí)題B組、C組(選做)
八年級數(shù)學(xué)教案10
一、學(xué)習(xí)目標(biāo)
1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理。
二、重點(diǎn)難點(diǎn)
重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過程。
三、合作學(xué)習(xí)
。ㄒ唬┗仡檰雾(xiàng)式除以單項(xiàng)式法則
(二)學(xué)生動手,探究新課
1.計(jì)算下列各式:
。1)(am+bm)÷m;
。2)(a2+ab)÷a;
。3)(4x2y+2xy2)÷2xy。
2.提問:
、僬f說你是怎樣計(jì)算的`;
、谶有什么發(fā)現(xiàn)嗎?
(三)總結(jié)法則
1.多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以XXXXXXXXXXX,再把所得的商XXXXXX
2.本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成XXXXXXXXXXXXXX
四、精講精練
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
。3)[(x+y)2—y(2x+y)—8x]÷2x;
。4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
隨堂練習(xí):教科書練習(xí)。
五、小結(jié)
1、單項(xiàng)式的除法法則
2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:
A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過程中注意單項(xiàng)式的系數(shù)飽含它前面的符號;
B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);
C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;
D、要注意運(yùn)算順序,有乘方要先做乘方,有括號先算括號里的,同級運(yùn)算從左到右的順序進(jìn)行;
E、多項(xiàng)式除以單項(xiàng)式法則。
八年級數(shù)學(xué)教案11
一、教材分析教材的地位和作用:
本節(jié)內(nèi)容是第一課時(shí)《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進(jìn)一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。
二、學(xué)情分析
八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實(shí)例和動手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。
三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定
根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:
(一)教學(xué)目標(biāo):
1、知識技能
(1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.
(2)理解并掌握軸對稱的概念,對稱軸;了解對稱點(diǎn).
(3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.
2、過程與方法目標(biāo)
經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實(shí)踐能力、抽象思維和語言表達(dá)能力.
3、情感、態(tài)度與價(jià)值觀
通過對生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。
(二)教學(xué)重點(diǎn):軸對稱圖形和軸對稱的有關(guān)概念.
(三)教學(xué)難點(diǎn):軸對稱圖形與軸對稱的聯(lián)系、區(qū)別
.四、教法和學(xué)法設(shè)計(jì)
本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的:
【教法策略】采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率
五、說程序設(shè)計(jì):
新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測、驗(yàn)證、推理與交流等數(shù)學(xué)活動。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個(gè)教學(xué)過程進(jìn)行了設(shè)計(jì)。
(一)、觀圖激趣、設(shè)疑導(dǎo)入。
出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時(shí)蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。
[設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,
(二)、實(shí)踐探索、感悟特征.
《活動一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。
為了進(jìn)一步認(rèn)識軸對稱圖形的特點(diǎn)又出示了一組練習(xí)
(練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸
[設(shè)計(jì)意圖]通過這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。
(練習(xí)2)國家的一個(gè)象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進(jìn)一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的'觀察能力、想象能力,同時(shí)通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識面。
(三)、動手操作、再度探索新知。
將一張紙對折,用筆尖扎出一個(gè)圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實(shí)踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。
再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進(jìn)而引出對稱軸、對稱點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識。
(四)、鞏固練習(xí)、升華新知。
出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,
在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。
(課件演示)軸對稱圖形及兩個(gè)圖形成軸對稱區(qū)別與聯(lián)系
(五)、綜合練習(xí)、發(fā)展思維。
1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。
2、判斷:
生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。
(1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?
0123456789ABCDEFGH
3、像這樣寫法的漢字哪些是軸對稱圖形?
口工用中由日直水清甲
(這幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)
(六)歸納小結(jié)、布置作業(yè)
[設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!
六、設(shè)計(jì)說明
這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個(gè)概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。
八年級數(shù)學(xué)教案12
教學(xué)目標(biāo):
1、掌握一次函數(shù)解析式的特點(diǎn)及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律
教學(xué)重點(diǎn):
1、 一次函數(shù)解析式特點(diǎn)
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學(xué)難點(diǎn):
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。
教學(xué)過程:
、瘢岢鰡栴},創(chuàng)設(shè)情境
問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.
分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.
問題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.
分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問題3 以上問題1和問題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?
Ⅱ.導(dǎo)入新課
上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);
(2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).
(5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;
。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
(7)一棵樹現(xiàn)在高50厘米,每個(gè)月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時(shí),y的值.
解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).
又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).
(1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時(shí)間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.
分析 因?yàn)樵谥淮蜷_進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的.三個(gè)階級中,儲油罐的儲油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
、螅S堂練習(xí)
根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過6米3時(shí),超過部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不
超過6米3和超過6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
Ⅳ.課時(shí)小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達(dá)式。
、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時(shí),y=7
(1)寫出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計(jì)算y=-4時(shí)x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.
3.倉庫內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹約有多高.
5.按照我國稅法規(guī)定:個(gè)人月收入不超過800元,免交個(gè)人所得稅.超過800元不超過1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
八年級數(shù)學(xué)教案13
教學(xué)目標(biāo):
1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。
2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡單的現(xiàn)象。
3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。
4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。
教學(xué)重點(diǎn):
體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。
教學(xué)難點(diǎn):
對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。
教學(xué)方法:
歸納教學(xué)法。
教學(xué)過程:
一、知識回顧與思考
1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。
一般地對于n個(gè)數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。
如某公司要招工,測試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計(jì)入總成績,這樣計(jì)算出的成績?yōu)閿?shù)學(xué),語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項(xiàng)測試成績的權(quán)。
中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。
眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)。
如3,2,3,5,3,4中3是眾數(shù)。
2、平均數(shù)、中位數(shù)和眾數(shù)的特征:
(1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。
(2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。
(3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。
(4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當(dāng)一組數(shù)據(jù)中個(gè)別數(shù)據(jù)變動較大時(shí),適宜選擇眾數(shù)來表示這組數(shù)據(jù)的'“集中趨勢”。
3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:
算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。
4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。
利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。
二、例題講解:
某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績分別按40%、20%、40%的比例計(jì)入學(xué)期總評成績,小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評成績是多少?
三、課堂練習(xí):
復(fù)習(xí)題A組
四、小結(jié):
1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。
2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。
五、作業(yè):
復(fù)習(xí)題B組、C組(選做)
八年級數(shù)學(xué)教案14
【教學(xué)目標(biāo)】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質(zhì)
3、探索三角形的中位線的性質(zhì)的一些簡單的應(yīng)用
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):三角形的中位線定理。
難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。
【教學(xué)過程】
。ㄒ唬﹦(chuàng)設(shè)情景,引入新課
1、如圖,為了測量一個(gè)池塘的'寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>
。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
(2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導(dǎo)學(xué)生概括出中位線的概念。
問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?
啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。
4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)
。ǘ、師生互動,探究新知
1、證明你的猜想
引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。
(已知:⊿ABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)
啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)
啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補(bǔ)短)
學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強(qiáng)調(diào)有其他證法。
證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),
∴DF∥BC(根據(jù)什么?),
∴DE 1/2BC
2、啟發(fā)學(xué)生歸納定理,并用文字語言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。
。ㄈ⿲W(xué)以致用、落實(shí)新知
1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長是多少?
2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。
求證:四邊形EFGH是平行四邊形。
啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會聯(lián)想到什么圖形?
啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,
∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG 1/2AC。
∴EF HG。
∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)
挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?
(四)學(xué)生練習(xí),鞏固新知
1、請回答引例中的問題(1)
2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點(diǎn)。求證:∠PNM=∠PMN
(五)小結(jié)回顧,反思提高
今天你學(xué)到了什么?還有什么困惑?
八年級數(shù)學(xué)教案15
教學(xué)目標(biāo):
1、知識目標(biāo):
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;
(3)會添加較明顯的輔助線.
2、能力目標(biāo):
(1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過程中滲透:實(shí)驗(yàn)、觀察、歸納;
(2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.
教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。
教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)腵方法判定兩個(gè)三角形全等。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過程:
1、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個(gè)數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個(gè)問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個(gè)元素――三條邊。
2、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個(gè)三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)
公理:有三邊對應(yīng)相等的兩個(gè)三角形全等。
應(yīng)用格式: (略)
強(qiáng)調(diào)說明:
(1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評。
例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架
求證:AD⊥BC
分析:(設(shè)問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1= 只要證什么?
(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
(2)講解例2(投影例2 )
例2已知:如圖AB=DC,AD=BC
求證:∠A=∠C
(1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。
(2)找學(xué)生代表口述證明思路。
思路1:連接BD(如圖)
證△ABD≌△CDB(SSS)先得∠A=∠C
思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教師共同討論后,說明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫出證明,一名學(xué)生板書,教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。
例3如圖,已知AB=AC,DB=DC
(1)若E、F、G、H分別是各邊的中點(diǎn),求證:EH=FG
(2)若AD、BC連接交于點(diǎn)P,問AD、BC有何關(guān)系?證明你的結(jié)論。
學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路
讓學(xué)生在練習(xí)本上寫出證明,然后選擇投影顯示。
證明:(略)
說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補(bǔ)角相等證兩直線的夾角等于 ,又是很重要的一種方法。
例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,
求證:AC=2AE.
證明:(略)
學(xué)生口述證明思路,教師強(qiáng)調(diào)說明:“中線”條件下的常規(guī)作輔助線法。
5、課堂小結(jié):
(1)判定三角形全等的方法:3個(gè)公理1個(gè)推論(SAS、ASA、AAS、SSS)
在這些方法中,每一個(gè)都需要3個(gè)條件,3個(gè)條件中都至少包含條邊。
(2)三種方法的綜合運(yùn)用
讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。
6、布置作業(yè):
a、書面作業(yè)P70#11、12
b、上交作業(yè)P70#14 P71B組3
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級數(shù)學(xué)教案人教版01-03
八年級下冊數(shù)學(xué)教案01-01
初中八年級數(shù)學(xué)教案11-03
八年級上冊數(shù)學(xué)教案11-09
人教版八年級數(shù)學(xué)教案11-04
八年級數(shù)學(xué)教案【熱】11-29