高三數(shù)學(xué)數(shù)列教案(7篇)
作為一位杰出的老師,時常需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么應(yīng)當(dāng)如何寫教案呢?下面是小編為大家收集的高三數(shù)學(xué)數(shù)列教案,僅供參考,希望能夠幫助到大家。
高三數(shù)學(xué)數(shù)列教案1
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標
a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\用。
b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:
、俚炔顢(shù)列的概念。
②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。
二、學(xué)情教法分析:
對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、學(xué)法指導(dǎo):
在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)程序
本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)
通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習(xí)2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情站境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。
(二)新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,
這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
① “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
③每一項與它的.前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1. 9,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0
由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0
2、第二個重點部分為等差數(shù)列的通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法,
資料共享平臺
《高中數(shù)學(xué)說課稿:等差數(shù)列》(https://www.unjs.com)。給出等差數(shù)列的首項,公差d,由學(xué)生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d (1)
當(dāng)n=1時,(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數(shù)列{an}的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。
對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想”的教學(xué)要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2,
即an=2n-1以此來鞏固等差數(shù)列通項公式運用
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
(三)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項
(2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.
例2在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固
例3是一個實際建模問題
建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設(shè)置此題的目的:1.加強同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法
(四)反饋練習(xí)
1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
目的:對學(xué)生加強建模思想訓(xùn)練。
3、若數(shù)例{an}是等差數(shù)列,若bn = k an,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列
此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
(五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達式.
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一
3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實際問題
(六)布置作業(yè)
必做題:課本P114習(xí)題3.2第2,6題
選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。
(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
五、板書設(shè)計
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
高三數(shù)學(xué)數(shù)列教案2
2。2。1等差數(shù)列學(xué)案
一、預(yù)習(xí)問題:
1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。
2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,
即 或 。
3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。
4、等差數(shù)列的通項公式: 。
5、判斷正誤:
、1,2,3,4,5是等差數(shù)列; ( )
、1,1,2,3,4,5是等差數(shù)列; ( )
、蹟(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )
、軘(shù)列 是公差為 的等差數(shù)列; ( )
、輸(shù)列 是等差數(shù)列; ( )
、奕 ,則 成等差數(shù)列; ( )
、呷 ,則數(shù)列 成等差數(shù)列; ( )
、嗟炔顢(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )
、岬炔顢(shù)列的`公差是該數(shù)列中任何相鄰兩項的差。 ( )
6、思考:如何證明一個數(shù)列是等差數(shù)列。
二、實戰(zhàn)操作:
例1、(1)求等差數(shù)列8,5,2,的第20項。
。2) 是不是等差數(shù)列 中的項?如果是,是第幾項?
。3)已知數(shù)列 的公差 則
例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?
例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。
高三數(shù)學(xué)數(shù)列教案3
一、課前檢測
1.在數(shù)列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數(shù)列{bn}的前n項的和.
解:由已知得:an=1n+1(1+2+3++n)=n2,
bn=2n2n+12=8(1n-1n+1) 數(shù)列{bn}的前n項和為
Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.
2.已知在各項不為零的數(shù)列 中, 。
(1)求數(shù)列 的通項;
(2)若數(shù)列 滿足 ,數(shù)列 的前 項的和為 ,求
解:(1)依題意, ,故可將 整理得:
所以 即
,上式也成立,所以
(2)
二、知識梳理
(一)前n項和公式Sn的定義:Sn=a1+a2+an。
(二)數(shù)列求和的方法(共8種)
5.錯位相減法:適用于差比數(shù)列(如果 等差, 等比,那么 叫做差比數(shù)列)即把每一項都乘以 的公比 ,向后錯一項,再對應(yīng)同次項相減,轉(zhuǎn)化為等比數(shù)列求和。
如:等比數(shù)列的前n項和就是用此法推導(dǎo)的.
解讀:
6.累加(乘)法
解讀:
7.并項求和法:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.
形如an=(-1)nf(n)類型,可采用兩項合并求。
解讀:
8.其它方法:歸納、猜想、證明;周期數(shù)列的求和等等。
解讀:
三、典型例題分析
題型1 錯位相減法
例1 求數(shù)列 前n項的和.
解:由題可知{ }的通項是等差數(shù)列{2n}的通項與等比數(shù)列{ }的通項之積
設(shè) ①
、 (設(shè)制錯位)
、-②得 (錯位相減)
變式訓(xùn)練1 (20xx昌平模擬)設(shè)數(shù)列{an}滿足a1+3a2+32a3++3n-1an=n3,nN*.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前n項和Sn.
解:(1)∵a1+3a2+32a3++3n-1an=n3, ①
當(dāng)n2時,a1+3a2+32a3++3n-2an-1=n-13. ②
①-②得3n-1an=13,an=13n.
在①中,令n=1,得a1=13,適合an=13n, an=13n.
(2)∵bn=nan,bn=n3n.
Sn=3+232+333++n 3n, ③
3Sn=32+233+334++n 3n+1. ④
④-③得2Sn=n 3n+1-(3+32+33++3n),
即2Sn=n 3n+1-3(1-3n)1-3, Sn=(2n-1)3n+14+34.
小結(jié)與拓展:
題型2 并項求和法
例2 求 =1002-992+982-972++22-12
解: =1002-992+982-972++22-12=(100+ 99)+(98+97)++(2+1)=5050.
變式訓(xùn)練2 數(shù)列{(-1)nn}的前20xx項的和S2 010為( D )
A.-20xx B.-1005 C.20xx D.1005
解:S2 010=-1+2-3+4-5++2 008-2 009+2 010
=(2-1)+(4-3)+(6-5)++(2 010-2 009)=1 005.
小結(jié)與拓展:
題型3 累加(乘)法及其它方法:歸納、猜想、證明;周期數(shù)列的求和等等
例3 (1)求 之和.
(2)已知各項均為正數(shù)的數(shù)列{an}的前n項的乘積等于Tn= (nN*),
,則數(shù)列{bn}的`前n項和Sn中最大的一項是( D )
A.S6 B.S5 C.S4 D.S3
解:(1)由于 (找通項及特征)
= (分組求和)= =
=
(2)D.
變式訓(xùn)練3 (1)(20xx福州八中)已知數(shù)列 則 , 。答案:100. 5000。
(2)數(shù)列 中, ,且 ,則前20xx項的和等于( A )
A.1005 B.20xx C.1 D.0
小結(jié)與拓展:
四、歸納與總結(jié)(以學(xué)生為主,師生共同完成)
以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數(shù)列的形式結(jié)構(gòu),使
其能進行消項處理或能使用等差數(shù)列或等比數(shù)列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規(guī)律,就能使數(shù)列求和化難為易,迎刃而解。
高三數(shù)學(xué)數(shù)列教案4
如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的'公比,公比通常用字母q表示。
(1)等比數(shù)列的通項公式是:An=A1×q^(n-1)
若通項公式變形為an=a1/q-q^n(n∈N-),當(dāng)q>0時,則可把an看作自變量n的函數(shù),點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。
(2)任意兩項am,an的關(guān)系為an=am·q^(n-m)
(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
(5)等比求和:Sn=a1+a2+a3+.......+an
①當(dāng)q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
、诋(dāng)q=1時,Sn=n×a1(q=1)
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數(shù)的等比數(shù)列各項取同底數(shù)數(shù)后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
高三數(shù)學(xué)數(shù)列教案5
數(shù)列
§3.1.1數(shù)列、數(shù)列的通項公式目的:要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項公式,給出一些數(shù)列能夠?qū)懗銎渫椆,已知通項公式能夠求?shù)列的項。
重點:1數(shù)列的概念。按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做數(shù)列的項,數(shù)列的第n項an叫做數(shù)列的通項(或一般項)。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復(fù)出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。
2.數(shù)列的通項公式,如果數(shù)列{an}的通項an可以用一個關(guān)于n的公式來表示,這個公式就叫做數(shù)列的通項公式。從映射、函數(shù)的觀點看,數(shù)列可以看成是定義域為正整數(shù)集N-(或?qū)挼挠邢拮蛹?的函數(shù)。當(dāng)自變量順次從小到大依次取值時對自學(xué)成才的一列函數(shù)值,而數(shù)列的通項公式則是相應(yīng)的解析式。由于數(shù)列的項是函數(shù)值,序號是自變量,所以以序號為橫坐標,相應(yīng)的項為縱坐標畫出的.圖像是一些孤立的點。難點:根據(jù)數(shù)列前幾項的特點,以現(xiàn)規(guī)律后寫出數(shù)列的通項公式。給出數(shù)列的前若干項求數(shù)列的通項公式,一般比較困難,且有的數(shù)列不一定有通項公式,如果有通項公式也不一定唯一。給出數(shù)列的前若干項要確定其一個通項公式,解決這個問題的關(guān)鍵是找出已知的每一項與其序號之間的對應(yīng)關(guān)系,然后抽象成一般形式。過程:一、從實例引入(P110)1.堆放的鋼管4,5,6,7,8,9,102.正整數(shù)的倒數(shù)
3. 4. -1的正整數(shù)次冪:-1,1,-1,1,…
5.無窮多個數(shù)排成一列數(shù):1,1,1,1,…
二、提出課題:數(shù)列
1.數(shù)列的定義:按一定次序排列的一列數(shù)(數(shù)列的有序性)
2.名稱:項,序號,一般公式,表示法
3.通項公式:與之間的函數(shù)關(guān)系式如數(shù)列1:數(shù)列2:數(shù)列4:
4.分類:遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動數(shù)列;有窮數(shù)列、無窮數(shù)列。
5.實質(zhì):從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整數(shù)集N-(或它的有限子集{1,2,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時對應(yīng)的一列函數(shù)值,通項公式即相應(yīng)的函數(shù)解析式。
6.用圖象表示:—是一群孤立的點例一(P111例一略)
三、關(guān)于數(shù)列的通項公式1.不是每一個數(shù)列都能寫出其通項公式(如數(shù)列3)
2.數(shù)列的通項公式不唯一如:數(shù)列4可寫成和
3.已知通項公式可寫出數(shù)列的任一項,因此通項公式十分重要例二(P111例二)略
四、補充例題:寫出下面數(shù)列的一個通項公式,使它的前項分別是下列各數(shù):1.1,0,1,0. 2.,,,,3.7,77,777,7777 4.-1,7,-13,19,-25,31 5.,,,
五、小結(jié):1.數(shù)列的有關(guān)概念2.觀察法求數(shù)列的通項公式
六、作業(yè):練習(xí)P112習(xí)題3.1(P114)1、2
七、練習(xí):1.觀察下面數(shù)列的特點,用適當(dāng)?shù)臄?shù)填空,關(guān)寫出每個數(shù)列的一個通項公式;(1),,,( ),,…(2),( ),,,…
2.寫出下面數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、 。
3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個通項公式
4.已知數(shù)列an的前4項為0,,0,,則下列各式①an= ②an= ③an=其中可作為數(shù)列{an}通項公式的是A ① B ①② C ②③ D ①②③
5.已知數(shù)列1,,,,3,…,,…,則是這個數(shù)列的( ) A.第10項B.第11項C.第12項D.第21項
6.在數(shù)列{an}中a1=2,a17=66,通項公式或序號n的一次函數(shù),求通項公式。
7.設(shè)函數(shù)( ),數(shù)列{an}滿足(1)求數(shù)列{an}的通項公式;(2)判斷數(shù)列{an}的單調(diào)性。
8.在數(shù)列{an}中,an=(1)求證:數(shù)列{an}先遞增后遞減;(2)求數(shù)列{an}的最大項。答案:1. (1),an= (2),an= 2.(1)an= (2)an= (3)an= (4)an= 3.an=或an=這里借助了數(shù)列1,0,1,0,1,0…的通項公式an=。4.D 5.B 6. an=4n-2
7.(1)an= (2)<1又an<0, ∴是遞增數(shù)列
高三數(shù)學(xué)數(shù)列教案6
教學(xué)目標:明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養(yǎng)學(xué)生觀察能力,進一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的'應(yīng)用意識.
教學(xué)重點:1.等差數(shù)列的概念的理解與掌握. 2.等差數(shù)列的通項公式的推導(dǎo)及應(yīng)用.教學(xué)難點:等差數(shù)列“等差”特點的理解、把握和應(yīng)用.教學(xué)過程:
Ⅰ.復(fù)習(xí)回顧上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式.這兩個公式從不同的`角度反映數(shù)列的特點,下面我們看這樣一些例子
Ⅱ.講授新課10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,…首先,請同學(xué)們仔細觀察這些數(shù)列有什么共同的特點?是否可以寫出這些數(shù)列的通項公式?(引導(dǎo)學(xué)生積極思考,努力尋求各數(shù)列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數(shù).也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點.具有這種特點的數(shù)列,我們把它叫做等差數(shù)列.
1.定義等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.
2.等差數(shù)列的通項公式等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得.若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當(dāng)n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數(shù)列{an}的通項公式.看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d
請同學(xué)們來思考這樣一個問題.如果在a與b中間插入一個數(shù)A,使a、A、b成等差數(shù)列,那么A應(yīng)滿足什么條件?由等差數(shù)列定義及a、A、b成等差數(shù)列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數(shù)列.總之,A= a,A,b成等差數(shù)列.如果a、A、b成等差數(shù)列,那么a叫做a與b的等差中項.例題講解[
例1]在等差數(shù)列{an}中,已知a5=10,a15=25,求a25.
思路一:根據(jù)等差數(shù)列的已知兩項,可求出a1和d,然后可得出該數(shù)列的通項公式,便可求出a25.
思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關(guān)系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數(shù)列{an}中,a5,a15,a25也成等差數(shù)列,則利用等差中項關(guān)系式,便可直接求出a25的值.
[例2](1)求等差數(shù)列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項
答案:這個數(shù)列的第20項為-49. (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數(shù)列的一項,關(guān)鍵要求出通項公式,看是否存在正整數(shù)n,可使得an=-401. ∴-401是這個數(shù)列的第100項.
、.課堂練習(xí)
1.(1)求等差數(shù)列3,7,11,……的'第4項與第10項.
(2)求等差數(shù)列10,8,6,……的第20項. (3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數(shù)列{an}中,
(1)已知a4=10,a7=19,求a1與d;
(2)已知a3=9,a9=3,求a12.
、.課時小結(jié)通過本節(jié)學(xué)習(xí),首先要理解與掌握等差數(shù)列的定義及數(shù)學(xué)表達式:an-an-1=d(n≥2).其次,要會推導(dǎo)等差數(shù)列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應(yīng)用.最后,還要注意一重要關(guān)系式:an=am+(n-m)d的理解與應(yīng)用以及等差中項。
、.課后作業(yè)課本P39習(xí)題1,2,3,4
高三數(shù)學(xué)數(shù)列教案7
證明數(shù)列是等比數(shù)列
an=(2a-6b)n+6b
當(dāng)此數(shù)列為等比數(shù)列時,顯然是常數(shù)列,即2a-6b=0
這個是顯然的東西,但是我不懂怎么證明
常數(shù)列嗎.所以任何一個K和M都應(yīng)該有ak=amak=(2a-6b)k+6b am=(2a-6b)m+6bak-am=(2a-6b)(k-m)因為ak-am恒為0k m任意所以一定有2a-6b=0即a=3b
補充回答:題目條件看錯,再證明當(dāng)此數(shù)列為等比數(shù)列時
2a-6b=0
因為等比a3:a2=a2:a1
即(6a-12b)-2a=(4a-6b)^2
a^2-6ab+9b^2=0
即(a-3b)^2=0
所以肯定有a=3b成立
2
數(shù)列an前n項和為Sn已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)證明
(1)(Sn/n)是等比數(shù)列
(2) S(n+1)=4an
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S[(n+1)/(n+1)]/[Sn/n]=2
S1/1=A1=1
所以Sn/n是以2為公比1為首項的等比數(shù)列
2、由1有Sn/n是以2為公比1為首項的等比數(shù)列
所以Sn/n的通項公式是Sn/n=1-2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
=n2^(n-1)-(n-1)2^(n-2)
=n-2-2^(n-2)-(n-1)2^(n-2)
=[2n-(n-1)]-2^(n-2)
=(n+1)2^(n-2)
=(n+1)-2^n/2^2
=(n+1)2^n/4
=S(n+1)/4
所以有S(n+1)=4An
a(n)-a(n-1)=2(n-1)
上n-1個式子相加得到:
an-a1=2+4+6+8+.....2(n-1)
右邊是等差數(shù)列,且和=[2+2(n-1)](n-1)/2=n(n-1)
所以:
an-2=n^2-n
an=n^2-n+2
4、
已知數(shù)列{3-2的N此方},求證是等比數(shù)列
根據(jù)題意,數(shù)列是3-2^n(^n表示肩膀上的方次),n=1,2,3,...
為了驗證它是等比數(shù)列只需要比較任何一項和它相鄰項的比值是一個不依賴項次的固定比值就可以了.
所以第n項和第n+1項分別是3-2^n和3-2^(n+1),相比之后有:
[3-2^(n+1)]/(3-2^n)=2
因為比值是2,不依賴n的'選擇,所以得到結(jié)論.
5
數(shù)列an前n項和為Sn已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)證明
(1)(Sn/n)是等比數(shù)列
(2) S(n+1)=4an
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S[(n+1)/(n+1)]/[Sn/n]=2
S1/1=A1=1
所以Sn/n是以2為公比1為首項的等比數(shù)列
2、由1有Sn/n是以2為公比1為首項的等比數(shù)列
所以Sn/n的通項公式是Sn/n=1-2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
【高三數(shù)學(xué)數(shù)列教案】相關(guān)文章:
高三數(shù)學(xué)數(shù)列教案精選7篇01-17