亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>數(shù)學(xué)教案例

            數(shù)學(xué)教案例

            時間:2023-01-24 18:54:03 數(shù)學(xué)教案 我要投稿
            • 相關(guān)推薦

            數(shù)學(xué)教案例9篇

              作為一位無私奉獻的人民教師,時常需要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么什么樣的教案才是好的呢?下面是小編為大家收集的數(shù)學(xué)教案例,歡迎大家借鑒與參考,希望對大家有所幫助。

            數(shù)學(xué)教案例9篇

            數(shù)學(xué)教案例1

              教學(xué)目標(biāo)

              1.使學(xué)生理解質(zhì)數(shù)、合數(shù)的概念.

              2.熟記20以內(nèi)的質(zhì)數(shù).

              教學(xué)重點

              1.理解掌握質(zhì)數(shù)、合數(shù)的概念.

              2.初步學(xué)會準(zhǔn)確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù).

              教學(xué)難點

              區(qū)分奇數(shù)、質(zhì)數(shù)、偶數(shù)、合數(shù).

              教學(xué)步驟

              一、鋪墊孕伏.

              例1.寫出下面各數(shù)的所有約數(shù):

              1的約數(shù): 2的約數(shù): 3的約數(shù): 4的約數(shù):

              5的約數(shù): 6的約數(shù): 7的約數(shù): 8的約數(shù):

              9的約數(shù): 10的約數(shù): 11的約數(shù); 12的約數(shù):

              二、探究新知.

              (一)引導(dǎo)學(xué)生歸納.

              1.按這些約數(shù)個數(shù)的多少,可以分為哪幾種情況?

              2.分組討論后匯報.

              3.引導(dǎo)學(xué)生說明:

              有一個約數(shù)的

              2.一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù).

              3.教師提問:1是質(zhì)數(shù)還是合數(shù)?

              學(xué)生明確:1既不是質(zhì)數(shù)也不是合數(shù),因為1只有一個約數(shù),既不符合質(zhì)數(shù)的特點,又不符合合數(shù)的特點.

              1既不是質(zhì)數(shù),也不是合數(shù).

              (五)按約數(shù)個數(shù)的多少給自然數(shù)分類.

              1.按照能否被2整除可以把自然數(shù)分為奇數(shù)、偶數(shù),那么,按照約數(shù)個數(shù)的多少,自然數(shù)又可以分為哪幾類?(三類:質(zhì)數(shù)、合數(shù)和1)

              2.教師提問:判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),關(guān)鍵是找什么?(關(guān)鍵:找約數(shù)的個數(shù))

              (六)教學(xué)例2.

              1.判斷下面各數(shù),哪些是質(zhì)數(shù),哪些是合數(shù).

              17 22 29 35 37 87

              (學(xué)生獨立練習(xí),集體訂正)

              教師強調(diào):熟練運用找約數(shù)的方法,這種做題法是做對題的關(guān)鍵.

              2.反饋練習(xí): 下面哪些數(shù)是質(zhì)數(shù),哪些數(shù)是合數(shù)?

              19 21 43 67

              (七)介紹100以內(nèi)的質(zhì)數(shù)表.

              1.除了用找約數(shù)的方法判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),還可以用查質(zhì)數(shù)表的方法.

              2.用質(zhì)數(shù)表檢查例2

              檢查方法;表中有17、29、37,說明是質(zhì)數(shù);

              22、35、87表中沒有,又不是1,說明是合數(shù).

              3.教師提示:要熟記20以內(nèi)的質(zhì)數(shù)

              三、全課小結(jié)

              同學(xué)們,這節(jié)課你學(xué)到了什么知識?

              四、課堂練習(xí)

              1.下面是2到50的數(shù),下話畫掉2的倍數(shù),再依次畫掉3、5、7的倍數(shù)(但2、3、5、

              7、本身不畫掉),剩下的數(shù)都是什么數(shù)?

              2 3 4 5 6 7 8 9 10

              11 12 13 14 15 16 17 18 19 20

              21 22 23 24 25 26 27 28 29 30

              31 32 33 34 35 36 37 38 39 40

              41 42 43 44 45 46 47 48 49 50

              教師提示:古希臘的.數(shù)學(xué)家就是用這種方式找質(zhì)數(shù)的,有興趣的同學(xué)可以用這種方法找100以內(nèi)的質(zhì)數(shù).

              2.檢查下面各數(shù)的約數(shù)的個數(shù),指出哪些是質(zhì)數(shù),哪些是合數(shù),分別填在指定的圈里,再用質(zhì)數(shù)表檢查.

              3.填空題.

             、儋|(zhì)數(shù)有個約數(shù),合數(shù)至少有個約數(shù).

             、谧钚〉馁|(zhì)數(shù)是,最小的合數(shù)是.

              ③既不是質(zhì)數(shù)也不是合數(shù).

              4.判斷.

             、偎械钠鏀(shù)都是質(zhì)數(shù).

              ②所有的偶數(shù)都是合數(shù).

             、墼谧匀粩(shù)中,除了質(zhì)數(shù)以外都是合數(shù).

             、芗炔皇琴|(zhì)數(shù)也不是合數(shù).

              5.在整數(shù)1~20中:

             、倨鏀(shù)有: 偶數(shù)有:

             、谫|(zhì)數(shù)有: 合數(shù)有:

              五、板書設(shè)計

              有一個約數(shù)的

              有兩個約數(shù)的

              有兩個以上的數(shù)的

              1的約數(shù)1

              2的約數(shù)1、2

              3的約數(shù)1、3

              5的約數(shù)1、5

              7的約數(shù)l、7

              11的約數(shù)1、11

              4的約數(shù)1、2、4

              6的約數(shù)1、2、3、6

              8的約數(shù)1、2、4、8

              9的約數(shù)1、3、9

              10的約數(shù)l、2、5、10

              12的約數(shù)1、2、3、4、6、12

              l既不是質(zhì)數(shù)也不是合數(shù)

              一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(素數(shù))

              一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù).

            數(shù)學(xué)教案例2

              第二課時

              教學(xué)內(nèi)容:P35~37 解比例

              教學(xué)過程:

              一、回顧舊知,復(fù)習(xí)鋪墊

              1、上節(jié)課我們學(xué)習(xí)了一些比例的知識,誰能說一說什么叫做比例?比例的基本性質(zhì)是什么?應(yīng)用比例的基本性質(zhì)可以做什么?

              2、判斷下面每組中的兩個比是否能組成比例?為什么?

              6:3和8:4 : 和 :

              3、這節(jié)課我們繼續(xù)學(xué)習(xí)有關(guān)比例的知識,學(xué)習(xí)解比例。(板書課題)

              二、引導(dǎo)探索,學(xué)習(xí)新知

              1、什么叫解比例?

              我們知道比例共有四項,如果知道其中的任何三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例。解比例要根據(jù)比例的基本性質(zhì)來解。

              2、教學(xué)例2。

              (1)把未知項設(shè)為X。解:設(shè)這座模型的高是X米。

             。2)根據(jù)比例的意義列出比例:X:320=1:10

              (3)讓學(xué)生指出這個比例的外項、內(nèi)項,并說明知道哪三項,求哪一項。

              根據(jù)比例的基本性質(zhì)可以把它變成什么形式?3x=815。

              這變成了什么?(方程。)

              教師說明:這樣解比例就變成解方程了,利用以前學(xué)過的解方程的方法就可以求出未知數(shù)X的值。因為解方程要寫解:,所以解比例也應(yīng)寫解:。

             。4)學(xué)生說,教師板書解比例的過程。

              教師:從剛才解比例的過程,可以看出,解比例可以根據(jù)比例的基本性質(zhì)把比例變成方程,然后用解方程的方法來求未知數(shù)x。

              3、教學(xué)例3。

              出示例3:解比例 =

              提問:這個比例與例 2有什么不同?(這個比例是分數(shù)形式。)

              這種分數(shù)形式的比例也能根據(jù)比例的基本性質(zhì),變成方程來求解嗎?

              學(xué)生回答后,教師說明在寫方程時,含有未知數(shù)的積通常寫在等號的左邊,然后板書:1.5X=2.56

              讓學(xué)生在課本上填出求解過程。解答后,讓他們說一說是怎樣解的。

              4、總結(jié)解比例的過程。

              剛才我們學(xué)習(xí)了解比例,大家回憶一下,解比例首先要做什么?(根據(jù)比例的基本性質(zhì)把比例變成方程。)

              變成方程以后,再怎么做?(根據(jù)以前學(xué)過的解方程的方法求解。)

              從上面的過程可以看出,在解比例的過程中哪一步是新知識?(根據(jù)比例的基本性質(zhì)把比例變成方程。)

              5、P35做一做。學(xué)生獨立解答,訂正時,讓學(xué)生說說是怎么做的.。

              三、鞏固深化,拓展思維

              P37第7題。

              四、全課小結(jié),提高認識

              什么叫解比例?解比例的根據(jù)是什么?解比例的書寫格式應(yīng)注意什么?

              五、課堂練習(xí),輔助消化

              P37~38第8~11題。

              六、課外補充,拓展延伸

              1、P38第12、13題。

              2、4:8=12:24,如果將第二項減少1,要使比例成立,則第四項減少多少?

              3、把兩個比值都是 的比組成比例,已知比例的兩個內(nèi)項都是15,請分別求出這個比例的兩個外項,并寫出比例。4、一個比例的四個項都是大于0的整數(shù),它的兩個比的比值都是 ,且第一項比第二項少3,第三項是第一項的3倍。請寫出這個比例。

              教學(xué)目的:1、使學(xué)生學(xué)會解比例的方法,進一步理解和掌握比例的基本性質(zhì)。

              2、通過合作交流、嘗試練習(xí),提高學(xué)生運用比例的基本性質(zhì)解比例的能力。

              3、培養(yǎng)學(xué)生的知識遷移的能力,增強學(xué)生的合作意識。

              教學(xué)重點:使學(xué)生掌握解比例的方法,學(xué)會解比例。

              教學(xué)難點:引導(dǎo)學(xué)生根據(jù)比例的基本性質(zhì),將比例改寫成兩個內(nèi)項的積等于兩個外項積的形式,即已學(xué)過的含有未知數(shù)的等式。

            數(shù)學(xué)教案例3

              教學(xué)課題:合比性質(zhì)和等比性質(zhì)

              教學(xué)目標(biāo):

              1、掌握合比性質(zhì)的等比性質(zhì),并會用它們進行簡單的比例變形

              2、會將合比性質(zhì)、等比性質(zhì)用于比例線段。

              3、提高學(xué)生類比聯(lián)想、推廣命題的能力。

              教學(xué)重、難點:

              熟練地、靈活地運用合比性質(zhì)與等比性質(zhì)。

              課前準(zhǔn)備:

              小黑板、幻燈機及幻燈片。

              教學(xué)過程:

              一、復(fù)習(xí)引入:

              我們在前邊學(xué)習(xí)了線段的比,比例的有關(guān)概念及性質(zhì),那么請同學(xué)們回憶

              1、什么叫線段的比?

              2、什么叫成比例線段?

              我們還學(xué)習(xí)了比例的基本性質(zhì),那么,除此之外,比例還有一些什么性質(zhì)呢?

              這就是本節(jié)課我們將要研究的比例的合比性質(zhì)與等比性質(zhì)。(出示課題:合比性質(zhì)與等比性質(zhì))

              那么,通過本節(jié)課的學(xué)習(xí)我們要達到一個什么樣的要求呢?(出示小黑板)看學(xué)習(xí)目標(biāo)1、2,(全班同學(xué)齊讀)

              下邊請同學(xué)們再回憶,我們在上一章學(xué)習(xí)的平等線等分線段定理是如何敘述的?(抽同學(xué)回答)

              請看幻燈(投影顯示)

              二、(用特殊化方法)探索合比性質(zhì)。

              1、復(fù)習(xí),已知:一組平行線在直線l上截得的線段AB=BC=CD=DE=EF則由平行線等分線段定理可得一個結(jié)論:即AB=BC=CD=DE=EF。

              2、將上述結(jié)論改寫成比例式,由此猜想得出結(jié)論,引導(dǎo)學(xué)生思考:如果設(shè)在l上截得的每一份為k,問AD=?DF=?

             。

              又設(shè)在l1上截得的`一等份為m,問AD=?DF=?

              ?

              觀察以上分析,可得出一個什么樣的結(jié)論?

              又觀察 與 有什么關(guān)系?對于一般的比例

              式都有這一個關(guān)系嗎?請猜一猜。

              猜想:學(xué)生口述(同學(xué)間可相互討論、研究)

              教師根據(jù)學(xué)生口述、寫出:

              如果

              3、證明猜想,得出合比性質(zhì),

              我們這個猜想,是否正確呢?

              (1)啟發(fā)學(xué)生觀察,已知與未知的關(guān)系,尋找證明思路,證法一:(設(shè)比法)

              設(shè)

              ∵

              ∴

              證法二、(利用等比性質(zhì)2)

              ∵ ∴ ∴

             。2)類比聯(lián)想,得到分比性質(zhì)。

              如果

              學(xué)生自由討論,可仿上邊自己證明結(jié)論。

              在今后,這兩種情形都叫合比性質(zhì),即

              如果

              (3)理解合比性質(zhì)的內(nèi)容,師生一起用文字語言敘述。

              4、類比聯(lián)想,將合比性質(zhì)推廣。

              在合比性質(zhì)的表達式中,

             。1)比例的二、四項保持不變,

              (2)比例的前后磺對應(yīng)求和或差,作為新比例式的第一、三比例項。

              由此,可作出以下類比聯(lián)想,并使用比例的基本性質(zhì)進行證明。

              猜想一,(教師引導(dǎo)) 如果

              二 …… 如果

              三 …… 如果 等等。

              對這幾個猜想出來的問題,其基本思考方法有兩種:

             。1)通過一定的方法,將它們變形利用合比性質(zhì)的結(jié)果,證明時,可靈活運用以下變形方法。

             、偻瑫r交換比例的內(nèi)或外項,(更比)

              如果

             、谕瑫r交換比例的前后項,(反比)

              如果

              比如證明猜想三,如果

             。2)對原合比性質(zhì)的證明方法進行類比、聯(lián)想來進行證明(設(shè)比法)

              三、利用合比性質(zhì)來證明等比性質(zhì)的特例,并推廣。

              1、練習(xí)(投影顯示)

              證明:

              2、觀察上述練習(xí)的兩個結(jié)論,并對一般情況作出猜想,對練習(xí)中相等的比值的比個數(shù)進行推廣。

              如果

              3、利用設(shè)比法進行證明,得出等比性質(zhì),同學(xué)們自己練習(xí),后與教材P20對比。

              4、強調(diào)證明方法“設(shè)比法”。

              設(shè)幾個相等的比值為k,用它們表示出每個比的前項(或后項)利用代數(shù)運算證明比例問題,這種思想方法在比例問題中經(jīng)常用到。

              四、簡單運用(出示小黑板)

              (1)已知: ,

             。2)已知:

             。3)已知: =

              注意:①合比性質(zhì)與等比性質(zhì)的證明方法和結(jié)論都很重要,都可用來證明有關(guān)比例式的問題。如第三題一問

              解法1、

              解法2、

              第二問可用解法2。

             、 還常以另一種形式出現(xiàn),即x:y:z=4:3:6但此時不能設(shè) 。

              五、師生共同小結(jié),看書完成P203練習(xí)

              1、合比性質(zhì),等比性質(zhì)及常用變形,尤其注意等比性質(zhì)的使用條件。

              2、證明兩個性質(zhì)時所用到的“設(shè)比法”的證明方法。

              3、類比聯(lián)想,推廣命題,由特殊到一般,再進行證明的方法。

              六、練習(xí):(1)已知 求 的值;

             。2)已知 求 的值;

             。3)已知 求 的值;

             。4)已知 試求 的值。

              由(4)題思考通過作第(4)題得出結(jié)論,結(jié)合前邊所學(xué)內(nèi)容猜想,你能得出什么結(jié)論,并試證之。

              板書設(shè)計:

              合比性質(zhì)與等比性質(zhì)

              1、合比性質(zhì): 2、等比性質(zhì): 小黑板①②③

            數(shù)學(xué)教案例4

              【教學(xué)內(nèi)容】

              2、5的倍數(shù)的特征(教材第9頁例1,教材第11頁練習(xí)三第1~2題)。

              【教學(xué)目標(biāo)】

              1.經(jīng)歷自主探索2和5的倍數(shù)的特征的過程。

              2.知道2、5的倍數(shù)的特征,會判斷一個自然數(shù)是不是2和5的倍數(shù)。

              3.培養(yǎng)學(xué)生的觀察、猜想、分析、歸納的能力,愿意與同學(xué)交流自己發(fā)現(xiàn)的結(jié)果,增強學(xué)習(xí)數(shù)學(xué)的興趣。

              【重點難點】

              通過探索發(fā)現(xiàn)2、5的倍數(shù)的特征,判斷一個數(shù)是不是2和5的倍數(shù)。

              【復(fù)習(xí)導(dǎo)入】

              師:同學(xué)們,我們一起玩?zhèn)猜數(shù)游戲,好嗎?你們?nèi)我庹f出一個自然數(shù),不管是幾位數(shù),我都能很快的判斷出它是否是2或5的倍數(shù)。不信可以試試看。

              學(xué)生報數(shù),老師答,同時請大家驗證。

              師:同學(xué)們的眼神里閃現(xiàn)出驚訝的目光。你們想知道老師為什么不計算就能馬上判斷出來嗎?學(xué)了今天的知識,你們就知道老師猜數(shù)的奧秘了。

              板書課題:2和5的倍數(shù)的特征。

              【新課講授】

              1.探索5的倍數(shù)特征

              (1)引入百數(shù)表。

              (2)出示課件:百數(shù)表,在這些數(shù)中找出5的倍數(shù),寫出來。

              (3)你們找的數(shù)和老師找的相同嗎?(課件出示百數(shù)表)

              (4)觀察5的倍數(shù),你有什么發(fā)現(xiàn)?把你的發(fā)現(xiàn)說給同桌聽聽。

              (5)歸納:誰來概括一下5的倍數(shù)到底有什么特征?板書:個位上是0或5的數(shù)都是5的倍數(shù)

              (6)驗證:除了這些數(shù)以外,其它5的倍數(shù)也有這樣的特征嗎?請舉例驗證。請你寫一個多位數(shù),并且是5的倍數(shù)。

              (7)過渡:學(xué)習(xí)了5的倍數(shù)的特征有什么好處?師隨機在黑板上寫一個數(shù),讓學(xué)生猜猜它是不是5的倍數(shù)。

              (8)練一練:下面哪些數(shù)是5的倍數(shù)?

              240,345,431,490,545,543,709,725,815,922,986,990。

              過渡:那172是幾的倍數(shù)呢?請同學(xué)驗證。2的倍數(shù)有什么特征,想不想研究?下面我們一起研究2的特征。

              2.探索2的倍數(shù)特征

              (1)猜一猜:根據(jù)研究5的倍數(shù)特征的經(jīng)驗,你猜一猜2的倍數(shù)可能會有什么特征呢?

              (2)課件出示:百數(shù)表找出2的倍數(shù)。(小組合作找出所有2的倍數(shù))

              (3)匯報后,觀察2的倍數(shù)的特征,看看你剛才的猜測是不是正確。

              (4)歸納:2的倍數(shù)有怎樣的特征?

              板書:個位上是0、2、4、6、8的數(shù)都是2的倍數(shù)。

              (5)驗證:除了這些數(shù)以外,其它2的倍數(shù)也有這樣的特征嗎?請舉例驗證。

              (6)填一填:下面哪些數(shù)是2的倍數(shù)?1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

              讓學(xué)生獨立完成后匯報。

              3.奇數(shù)、偶數(shù)的再認識

              自然數(shù)按是不是2的倍數(shù)來分可分為奇數(shù)和偶數(shù)兩大類,2的倍數(shù)都是偶數(shù),不是2的倍數(shù)就是奇數(shù)。

              4.那么既是2的倍數(shù)又是5的倍數(shù)有什么特征呢?

              (1)在5的倍數(shù)中找出2的倍數(shù);

              (2)在2的倍數(shù)中找到5的倍數(shù)。

              比較:判斷一個數(shù)是不是2或5的倍數(shù),都是看什么?

              結(jié)論:個位上是0的數(shù),既是2的倍數(shù)又是5的'倍數(shù)。

              【課堂作業(yè)】

              1.完成教材第9頁“做一做” 。

              2. 完成教材第11頁練習(xí)三第1~2題。

              【課堂小結(jié)】

              1.現(xiàn)在,你們知道老師猜數(shù)的奧秘了嗎?現(xiàn)在老師說數(shù),請同學(xué)們判斷出它是不是5或2的倍數(shù)。

              2.通過今天的學(xué)習(xí),你有什么收獲?還有什么問題?

              【課后作業(yè)】

              完成練習(xí)冊中本課時練習(xí)。

              板書: 2、5的倍數(shù)的特征

              個位上是0或5的數(shù)都是5的倍數(shù);

              個位上是0、2、4、6、8的數(shù)都是2的倍數(shù);

              個位上是0的數(shù),既是2的倍數(shù)又是5的倍數(shù)。

              通過這節(jié)課的教學(xué),使我認識到數(shù)學(xué)課堂教學(xué)活動是一個活潑的、主動的、豐富多彩的活動空間。教學(xué)中,我從學(xué)生已有的生活經(jīng)驗出發(fā),結(jié)合學(xué)生的認識規(guī)律,給學(xué)生提供有趣的情景,激發(fā)學(xué)生的探求欲望,創(chuàng)設(shè)觀察、操作、合作交流的機會;讓學(xué)生通過動腦、動手、動口,做他們想做的,在做的過程中觀察知識,在合作交流中去思考、質(zhì)疑。充分發(fā)揮學(xué)生的主體作用,讓學(xué)生在活動中學(xué)習(xí)數(shù)學(xué),使學(xué)生真正感受到學(xué)習(xí)數(shù)學(xué)的樂趣。密切聯(lián)系學(xué)生的生活實際,使學(xué)生真正領(lǐng)略到數(shù)學(xué)就在我們身邊,生活中處處有數(shù)學(xué)。

            數(shù)學(xué)教案例5

              課題:一元二次方程實數(shù)根錯例剖析課

              【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

              【課前練習(xí)】

              1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。

              2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。

              【典型例題】

              例1 下列方程中兩實數(shù)根之和為2的方程是()

              (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

              錯答: B

              正解: C

              錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

              例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

              (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

              錯解 :B

              正解:D

              錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

              例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

              錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

              錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。

              正解: -1≤k<2且k≠

              例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。

              錯解:由根與系數(shù)的關(guān)系得

              x1+x2= -(2m+1), x1x2=m2+1,

              ∵x12+x22=(x1+x2)2-2 x1x2

             。絒-(2m+1)]2-2(m2+1)

             。2 m2+4 m-1

              又∵ x12+x22=15

              ∴ 2 m2+4 m-1=15

              ∴ m1 = -4 m2 = 2

              錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

              正解:m = 2

              例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

              錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

              ∵ △≥0

              ∴ 16 m+20≥0,

              ∴ m≥ -5/4

              又 ∵ m2-1≠0,

              ∴ m≠±1

              ∴ m的取值范圍是m≠±1且m≥ -

              錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。

              正解:m的.取值范圍是m≥-

              例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負數(shù),求方程的整數(shù)根。

              錯解:∵方程有整數(shù)根,

              ∴△=9-4a>0,則a<2.25

              又∵a是非負數(shù),∴a=1或a=2

              令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

              ∴方程的整數(shù)根是x1= -1, x2= -2

              錯因剖析:概念模糊。非負整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

              正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

              【練習(xí)】

              練習(xí)1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

             。1)求k的取值范圍;

             。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

              解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

              ∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。

              (2)存在。

              如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

              ∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

              讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

              解:上面解法錯在如下兩個方面:

             。1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

             。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

              練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

              解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=

             。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4

              ∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。

              又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

              x1+x2=- >0 ;

              x1. x2=- >0 解得 :a<0

              綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。

              【小結(jié)】

              以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

              1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

              2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。

              3、條件多面時(如例5、例6)考慮要周全。

              【布置作業(yè)】

              1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

              2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

              求證:關(guān)于x的方程

             。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

              考題匯編

              1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

              2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

              (1)若方程的一個根為1,求m的值。

             。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

              3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

              4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

            數(shù)學(xué)教案例6

              【教學(xué)目標(biāo)】

              1.使學(xué)生通過觀察、猜想、驗證、理解并掌握3的倍數(shù)的特征。

              2.引導(dǎo)學(xué)生學(xué)會判斷一個數(shù)能否被3整除。

              3.培養(yǎng)學(xué)生分析、判斷、概括的能力。

              【重點難點】

              理解并掌握3的倍數(shù)的特征。

              【復(fù)習(xí)導(dǎo)入】

              1.學(xué)生口述2的倍數(shù)的特征,5的倍數(shù)的特征。

              2.練習(xí):下面哪些數(shù)是2的倍數(shù)?哪些數(shù)是5的倍數(shù)?

              324 153 345 2460 986 756

              教師:看來同學(xué)們對于2、5的倍數(shù)已經(jīng)掌握了,那么3的倍數(shù)的特征是不是也只看個位就行了?這節(jié)課,我們就一起來研究3的倍數(shù)的特征。

              板書課題:3的倍數(shù)的特征。

              【新課講授】

              1.猜一猜:3的倍數(shù)有什么特征?

              2.算一算:先找出10個3的倍數(shù)。

              3×1=3 3×2=6 3×3=9

              3×4=12 3×5=15 3×6=18

              3×7=21 3×8=24 3×9=27

              3×10=30……

              觀察:3的倍數(shù)的個位數(shù)字有什么特征?能不能只看個位就能判斷呢?(不能)

              提問:如果老師把這些3的倍數(shù)的個位數(shù)字和十位數(shù)字進行調(diào)換,它還是3的倍數(shù)嗎?(讓學(xué)生動手驗證)

              12→21 15→51 18→81 24→42 27→72

              教師:我們發(fā)現(xiàn)調(diào)換位置后還是3的倍數(shù),那3的倍數(shù)有什么奧妙呢?

              (以四人為一小組、分組討論,然后匯報)

              匯報:如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。

              3.驗證:下面各數(shù),哪些數(shù)是3的倍數(shù)呢?

              210 54 216 129 9231 9876

              小結(jié):從上面可知,一個數(shù)各位上的'數(shù)字之和如果是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。(板書)

              4.比一比(一組筆算,另一組用規(guī)律計算)。

              判斷下面的數(shù)是不是3的倍數(shù)。

              3402 5003 1272 2967

              5.“做一做”,指導(dǎo)學(xué)生完成教材第10頁“做一做”。

              (1)下列數(shù)中3的倍數(shù)有 。

              14 35 45 100 332 876 74 88

             、僖髮W(xué)生說出是怎樣判斷的。

             、3的倍數(shù)有什么特征?

              (2)提示:①首先要考慮誰的特征?(既是2又是5的倍數(shù),個位數(shù)字一定是0)

             、诮又倏紤]什么?(最小三位數(shù)是100)

              ③最后考慮又是3的倍數(shù)。(120)

              【課堂作業(yè)】

              完成教材第11~12頁練習(xí)三的第4、6、7、8、9、10、11題。

              【課堂小結(jié)】

              同學(xué)們,通過今天的學(xué)習(xí)活動,你有什么收獲和感想?

              【課后作業(yè)】

              完成練習(xí)冊中本課時練習(xí)。

              3的倍數(shù)的特征

              一個數(shù)各位上的數(shù)字之和是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。

              教學(xué)3的倍數(shù)的特征時,教師要注意學(xué)生的自主探索過程,通過猜一猜、算一算、想一想、驗一驗、比一比等教學(xué)環(huán)節(jié),循序漸進地讓學(xué)生參與到學(xué)習(xí)中來,但教師在想一想這個環(huán)節(jié)中要進行適當(dāng)點撥、引導(dǎo),這樣效果更明顯。

            數(shù)學(xué)教案例7

              教學(xué)目標(biāo)

              1.聯(lián)系長方體表面積在生活中的運用,培養(yǎng)學(xué)生用數(shù)學(xué)知識解決問題的意識.

              2.在擺、算、想象、猜想等學(xué)習(xí)活動中,培養(yǎng)學(xué)生有序思考、合理分類、化繁為簡的思維方法,并發(fā)展空間觀念.

              3.會根據(jù)實際需要,合理策劃選擇包裝樣式,體現(xiàn)解決問題策略的多樣化.

              4.能用準(zhǔn)確的數(shù)學(xué)語言描述思考過程.

              教學(xué)過

              一、引入.

              師:生活中,常把幾個長方體物體包成一個大長方體.這樣就會有各種各樣的包裝.

              學(xué)生間相互交流了解的情況.

              師:前幾天,我曾讓大家去了解這方面的情況,誰來說說你帶來了什么?

              生:火柴盒、香煙盒或藥盒等.

              師:這節(jié)課,我們一起來討論、研究問題.(揭題).

              二、展開.

              1.師:下面我們研究兩個相同情況.想一想:用兩個相同的長方體物體包裝,會有幾種不同的包法?

              2.試一試:要求擺得出,還要說得明白.

              交流:有哪幾種?為了方便表達,面用字母A表示,次大面用字母B表示,最小面用字母C表示.

              歸納:三種不同包法:A面重疊(上下疊);B面重疊(前后疊);C面重疊(左右疊).

              3.師:現(xiàn)在研究6個相同情況.2個有三種不同擺法,6個有幾種呢?你能很快猜出有幾種嗎?

              生:6、7、8、9、10、12種等.

              師:那么,究竟有幾種呢?想試試嗎?(生:想!)

              師:兩人一組,邊擺邊思考,怎樣說才能讓大家明白你的擺法?

              合作學(xué)習(xí):

              (1)小組擺、交流.教師在巡視時及時向同學(xué)們推薦了同學(xué)中作記錄的學(xué)習(xí)方法.并問:為什么要記呢?

              生:包裝方式多,記一記,不會重復(fù).

              (2)大組交流、匯報.

              兩人一組匯報,要求一位同學(xué)邊說邊擺,另外一位同學(xué)選擇相應(yīng)的直觀圖貼在黑板上.

              學(xué)生匯報:總共有9種不同的包法.(見下圖)

              師生歸納:按接觸面思考:A、B、C各一種;AB、AC、BC各兩種.

              師:這種方法怎么樣?它是按什么思考的?

              生:按接觸面來思考;這樣思考有序,不容易漏掉.

              師:還有其他思考方法嗎?能不能將問題簡化,比如以兩個一組作為一個整體,將兩個A面重疊(上下疊)的長方體看作一個大長方體,這樣就轉(zhuǎn)化為3個長方體的包裝問題了,可以有幾種包法?

              生:按上下、前后、左右的方向拼擺,有3種包法.

              師:大家從中受到什么啟發(fā)?還可以怎樣考慮?.

              生:哦,我明白了!還可以將兩個B面重疊(前后疊)的長方體看作一個大長方體,按上下、前后、左右的方向拼擺,又有3種包法.

              生:還可以將兩個C面重疊(前后疊)的長方體看作…….

              生:(搶著說)對,對!它也有3種包法.因此6個長方體共有3×3=9種不同的包法.

              師:這種方法怎么樣?

              生:這種方式很好,很清楚.

              師:先把2個小長方體看作一個大長方體,那么6個小長方體就可以看作3個大長方體.2個小長方體間的位置不同,就得到了3個不同長方體的包裝問題.這種將復(fù)雜的問題轉(zhuǎn)化為已經(jīng)解決簡單問題,是我們解決問題的基本方法,很重要.

              4.師:現(xiàn)在我們來猜猜,哪些樣式的表面積較大、較小?說理由,并算算.

              生:都是C面重疊的包裝樣式的.表面積較大,因為重疊部分面積最小;上圖第一列中的A面重疊、AB、AC面重疊的包裝樣式表面積較小,因為重疊部分面積較大……

              師:哪個表面積更小些呢?

              生:可以算一算.

              師:假設(shè)A面面積為6,B面為3,C面為2.

              生:6×2+3×12+2×12=72,6×4+3×6+2×12=66,6×4+3×12+2×6=72.這幾個表面積都比較小.

              三、討論現(xiàn)實生活中的各種包裝.

              教師取一種物品(火柴),先請大家猜可能的包裝樣式,再說說理由,結(jié)合實際談想法.

              學(xué)生打開一包火柴觀察后說,(見圖)這種樣式表面積小,也就是材料省.

              師:是不是廠商對商品的包裝都考慮節(jié)省材料呢?

              生:不一定.

              師:分小組,互相觀察帶來的其他物品,說說自己的看法.

              學(xué)生紛紛舉例說明:有的考慮經(jīng)濟、實用,有的考慮美觀、大方, 有的考慮方便……不同的需要就有不同的標(biāo)準(zhǔn).

              四、小結(jié).

              師:這節(jié)課對你有什么啟示?

              生:生活中有許多事,可以用數(shù)學(xué)方法來解決;包裝這一小問題,學(xué)問可不小;我們可以用一定的標(biāo)準(zhǔn)選擇方案……

              探究活動

              設(shè)計包裝盒

              活動目的

              發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生用數(shù)學(xué)知識解決問題的意識.

              活動題目

              某工廠生產(chǎn)A、B、C、D、E五種產(chǎn)品.廠方要設(shè)計師設(shè)計一種通用的包裝盒子,能包裝這五種產(chǎn)品中任一種.設(shè)計師按要求設(shè)計了如下圖中所示的包裝盒子.

              五種產(chǎn)品:

              包裝盒子:

              廠方負責(zé)人看了設(shè)計師設(shè)計的包裝盒后,不滿意,認為太浪費了,根本不需要設(shè)計成十二格的長方體,只要放得下產(chǎn)品就可以了.于是設(shè)計師改進了方案,設(shè)計了最少體積的盒子.同學(xué)們,你們知道盒子的體積有多大嗎?(即由幾個小立方體組成)形狀是怎樣的?

              活動方法

              學(xué)生利用學(xué)具分小組拼擺

              參考答案

            數(shù)學(xué)教案例8

              教學(xué)內(nèi)容:教科書第54頁例2、例3,完成“做一做”和練習(xí)十三.

              教學(xué)目的

              1.使學(xué)生認識小括號及其作用,了解帶小括號式題的運算順序,會計算帶小括號的兩步式題.

              2.加強數(shù)學(xué)語言訓(xùn)練,培養(yǎng)學(xué)生觀察、比較、分析、綜合和判斷能力.

              3.培養(yǎng)學(xué)生認真審題的習(xí)慣.

              教具準(zhǔn)備:多媒體課件一套.學(xué)生準(zhǔn)備小圓片若干個.

              教學(xué)過程

              一、復(fù)習(xí)鋪墊

              1.口算:

              9+3 4+3 7+5 12-7 14-5

              2.說一說先算什么,再算什么,并說出答案.

              3+5+7 5+4-3 10-2+5

              師:“加減兩步式題的運算順序是什么?”(按從左到右的順序計算.)

              二、探索新知

              1.創(chuàng)設(shè)情境,導(dǎo)入新課.

              師:“以前老師和同學(xué)們一起認識了很多朋友,如100以內(nèi)的數(shù)、加號、減號等,今天老師又要給大家介紹一位新朋友,你們想認識嗎?”

              生:“想!”

              師:“這位朋友就是小括號.”

              教師在黑板上板書“小括號”,并用紅粉筆在后面書寫( ),接著讓學(xué)生用手指書空2遍.

              師:“小括號的作用可大了,它能幫助我們解決很多問題.那么小括號到底有什么作用呢?老師先給大家講一個故事.”

              2.認識小括號及作用.

              師:“有一天小兔和小狗到小熊家去做客,它倆剛一進門,小熊就高興地說:“你們來得真好!快幫我算算盤里一共有多少塊糖?”小熊指著盤里的糖說:“這里有黃色的2塊,綠色的3塊,紅色的7塊,你們想想該怎樣算能求出一共有多少塊糖?”

              師:“請同學(xué)們也來幫小熊算算好嗎?拿出準(zhǔn)備好的圓片,在桌上擺一擺,猜猜小兔和小狗是怎樣算的?”

              生①:“先把黃、綠兩種圓片相加,再加紅色圓片.”

              生②:“先把紅、綠兩種相加,再加黃色圓片.”

              師:“這兩個同學(xué)誰做得對?”

              生:“都對.”

              師:“他們都做對了,只是方法不同,那么怎么區(qū)別他們的做法呢?誰有好辦法?”

              (教師故做無可奈何的樣子.)

              師:“這就需要我們的好朋友小括號來幫忙.它的.作用就是把先算的部分括起來.”

              電腦出示將兩組先算的部分用括號括起來.電腦反復(fù)閃爍小括號的位置,強調(diào)小括號的作用.

              (2+3)+7=12 2+(3+7)=12

              師:“誰能說說這兩個算式先算什么?再算什么?想一想,小括號的作用是什么?”

              師:以后,先算的部分在前面,括號就可以省略.例如(2+3)+7=12的括號就可以省略.

              教師指導(dǎo)學(xué)生讀帶小括號的兩步式題.

              3.帶小括號兩步式題的計算過程.

              師:“以后看到一個算式里有括號,怎樣計算呢?請同學(xué)們看這道題.”

              出示例3:15-(6+2)=?

             、僬埻瑢W(xué)讀題.想想這道題先算什么?再算什么?等于幾?教師追問為什么這樣算?以后看到算式里有小括號應(yīng)該怎樣算?

             、趯W(xué)生回答后教師板書:一個算式里有括號,先算括號里面的.

             、圩鱿旅娓黝},說一說先算什么,再算什么.

              12-5+4= 14-9-3=

              12-(5+4)= 14-(9-3)=

              三、應(yīng)用新知

              1.看圖計算.

              2.對比練習(xí).

             、倬毩(xí)十三第1題.

              13-4+5= 7+7-6=

              13-(4+5)= 7+(7-6)=

              讓學(xué)生仔細觀察上、下兩個算式找出相同和不同.

              師:計算加減兩步式題,要認真看清算式里有沒有括號,有括號的先算括號里面的,沒有括號,就從左往右按順序計算.

             、谙旅3題,哪題先算“4+6”?為什么?

              13-4+6 13-(4+6) 4+6-5

              3.游戲.

             、僬t花.

              計算橫行和豎行每三個數(shù)的和,誰先算出得數(shù),并說出用哪種方法簡便,就摘下紅花.

              ②找朋友.

              發(fā)給學(xué)生一張寫有算式的卡片,算出得數(shù).得數(shù)相等的就是一對好朋友.例如:

              15+4-2 12+(11-9) 9+(10-1)

              18-(4+6) 7+(3+4) 10-(15-13)

              4.在適當(dāng)?shù)奈恢锰砩闲±ㄌ柺沟仁匠闪?

              14-9-3= 79-8+1=70

              四、小結(jié)

              啟發(fā)學(xué)生自己歸納小括號的作用,以及在計算中應(yīng)注意的問題.

              板書設(shè)計:

              小括號( )

              例2:○○ ○○○ ○○○○○○○

              └───┘ │ 例3:15-(6+2)=

              5 │ 想:先算6加2得8;

              └───────┘ 再算15減8得7.

              (2+3)+7=12

              一個算式里有括號,先算括號里面的.

              ○○ ○○○ ○○○○○○○

              │ └─────┘

              │ 10

              └──────┘

              12

              2+(3+7)=12

              教學(xué)設(shè)計說明

              本節(jié)課按照“實物→圖形→算式→結(jié)論→運用”這個思路進行,把重點放在理解小括號的產(chǎn)生及作用上.

              1.采用設(shè)疑激趣的方法引導(dǎo)學(xué)生主動建構(gòu)知識結(jié)構(gòu).

              “好奇是兒童的天性,好奇是發(fā)明創(chuàng)造的源泉.”在教學(xué)中根據(jù)兒童的好奇心,以給兒童介紹新朋友的形式出示課題,使學(xué)生對本節(jié)課產(chǎn)生濃厚的興趣.在教學(xué)例2,“如何用算式來表示第二種算法時”使學(xué)生產(chǎn)生疑惑,這時教師巧妙引出小括號,說明小括號的作用.這樣讓學(xué)生主動參與教學(xué)過程,對小括號的作用產(chǎn)生深刻印象.

              2.精心設(shè)計練習(xí),增強新知清晰度、穩(wěn)定性.

              學(xué)生獲取新知是有一個過程的,掌握新知需要通過一定量的練習(xí),以增強新知清晰度、穩(wěn)定性.

              在對比練習(xí)中,每組算式的數(shù)字和運算符號完全一樣,只是一道題中多了一個小括號,所以計算順序和答案不一樣.從而加深學(xué)生對小括號作用的理解,同時也培養(yǎng)了學(xué)生仔細觀察,認真審題的習(xí)慣.

              為了滿足學(xué)生的表現(xiàn)欲望,設(shè)計了摘紅花、找朋友等游戲.他們要用靈活的思維,快速的反應(yīng)及全體同學(xué)共同合作完成.這種手、眼、腦多種器官共同協(xié)調(diào)活動,既鞏固了新知,又可使學(xué)生變得活潑、聰明。

            數(shù)學(xué)教案例9

              教學(xué)目標(biāo)

              1.通過觀察實際,使學(xué)生知道什么是體積.

              2.認識常用的體積單位:立方米、立方分米、立方厘米.

              3.能正確區(qū)分長度單位、面積單位和體積單位的不同.

              教學(xué)重點

              使學(xué)生感知物體的體積,初步建立1立方米、1立方分米、1立方厘米的體積觀念.

              教學(xué)難點

              幫助學(xué)生建立體積是1立方米、1立方分米、1立方厘米的大小表象,能正確應(yīng)用體積單位估算常見物體的體積.

              教學(xué)步驟

              一、鋪墊孕伏.

              1.1米、1分米、1厘米,這是什么計量單位?

              2.1平方米、1平方分米、1平方厘米,這是什么計量單位?

              二、探究新知.

              我們學(xué)習(xí)了長度和長度單位,面積和面積單位.今天我們要學(xué)習(xí)一個新概念:.

              4.比較物體體積的大小.

              實物比較:字典和大詞典 桌子和椅子 水桶和茶葉桶 課本和練習(xí)本

              1.認識1立方厘米(出示一塊1立方厘米的體積模型)

              這就是體積為1立方厘米的正方體.

              分組觀察,然后匯報:你知道了什么?

              看一看:1立方厘米的體積比較小,是正方體.

              量一量:1立方厘米的正方體的棱長是1厘米.

              說一說:棱長1厘米的正方體體積是1立方厘米

              想一想:體積是1立方厘米的物體比較小.

              議一議:哪些物體計量體積時使用立方厘米比較恰當(dāng)?

              2.認識1立方分米.(出示一塊1立方分米的體積模型)

              這就是體積為1立方分米的正方體.

              分組觀察,然后匯報:你知道了什么?

              看一看:1立方分米的體積大一些,是一個正方體.

              量一量:1立方分米的正方體的棱長是1分米.

              說一說:棱長1分米的正方體,體積是1立方分米.

              想一想:體積是1立方分米的物體比1立方厘米的物體大.

              議一議:哪些物體計量體積時使用立方分米比較恰當(dāng)?

              3.認識1立方米.

              思考:什么樣的物體的`體積是1立方米?

              (四)反饋練習(xí).

              1.看圖說出物體的體積.

              2.用12個1立方厘米的正方體木塊擺成不同形狀的長方體.它們的體積各是多少?

              (都是12立方厘米.不論物體是什么形狀,含有幾個體積單位,它的體積就是多少)

              三、全課小結(jié).

              這節(jié)課你學(xué)了哪些知識?

              四、隨堂練習(xí).

              1.填空.

              一塊橡皮的體積約是8

              一臺錄音機的體積約是20

              運貨集裝箱的體積約是40

              2.連線:學(xué)校主席臺的體積 24立方厘米

              書包的體積 24立方米

              碳素墨水盒的體積 24立方分米

              3.說說身邊的物體的體積大約是多少?

              五、課后作業(yè) .

              下面的圖形都是用棱長1厘米的小正方體拼成的,說出它們的體積各是多少立方厘米?

              六、板書設(shè)計.

              物體所占空間的大小叫做物體的體積.

              物體含有多少個體積單位,體積就是多少.

            【數(shù)學(xué)教案例】相關(guān)文章:

            談議論文的敘例與析例論文05-22

            課例研究心得11-22

            課例研究職教論文03-27

            例談高考作文的寫作03-29

            例談創(chuàng)新思維的培養(yǎng)03-30

            中學(xué)英語寫作例講03-29

            課文“例”當(dāng)先 作文巧遷移08-29

            課例研修心得體會03-31

            美術(shù)教學(xué)反思課例:大樹的線條03-21

            課例研修心得(通用14篇)10-28