亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>初二數(shù)學(xué)教案

            初二數(shù)學(xué)教案

            時(shí)間:2023-10-12 17:02:06 數(shù)學(xué)教案 我要投稿

            (集合)初二數(shù)學(xué)教案15篇

              作為一名優(yōu)秀的教育工作者,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。如何把教案做到重點(diǎn)突出呢?以下是小編收集整理的初二數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。

            (集合)初二數(shù)學(xué)教案15篇

            初二數(shù)學(xué)教案1

              1。教材分析

             。1)知識(shí)結(jié)構(gòu):

              (2)重點(diǎn)和難點(diǎn)分析:

              重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

              難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

              2。教法建議

             。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

              (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

             。3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

              (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問題。

              一、素質(zhì)教育目標(biāo)

              (一)知識(shí)教學(xué)點(diǎn)

              1。使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。

              2。了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。

             。ǘ┠芰τ(xùn)練點(diǎn)

              1。通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。

              2。通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想。

              3。會(huì)根據(jù)比較簡(jiǎn)單的條件畫出指定的四邊形。

              4。講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類比思想。

             。ㄈ┑掠凉B透點(diǎn)

              使學(xué)生認(rèn)識(shí)到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣。

             。ㄋ模┟烙凉B透點(diǎn)

              通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。

              二、學(xué)法引導(dǎo)

              類比、觀察、引導(dǎo)、講解

              三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法

              1。教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題。

              2。教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。

              3。疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角。

              四、課時(shí)安排

              2課時(shí)

              五、教具學(xué)具準(zhǔn)備

              投影儀、膠片、四邊形模型、常用畫圖工具

              六、師生互動(dòng)活動(dòng)設(shè)計(jì)

              教師引入新課,學(xué)生觀察圖形,類比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。

              第一課時(shí)

              七、教學(xué)步驟

              【復(fù)習(xí)引入】

              在小學(xué)里已經(jīng)對(duì)四邊形、長(zhǎng)方形、平形四邊形的有關(guān)知識(shí)有所了解,但還很膚淺,這一

              章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識(shí)解決一些新問題。

              【引入新課】

              用投影儀打出課前畫好的教材中P119的圖。

              師問:在上圖中你能把知道的長(zhǎng)方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形)。

              【講解新課】

              1。四邊形的.有關(guān)概念

              結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對(duì)角線(同時(shí)學(xué)生在書上畫出上述概念),講解這些概念時(shí):

             。1)要結(jié)合圖形。

             。2)要與三角形類比。

              (3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn) 。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。

              (4)強(qiáng)調(diào)四邊形對(duì)角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對(duì)角線分成的這些三角形與原四邊形的關(guān)系。

             。5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖41。

             。6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4—4,圖4—5。

              2。四邊形內(nèi)角和定理

              教師問:

              (1)在圖4—3中對(duì)角線AC把四邊形ABCD分成幾個(gè)三角形?

              (2)在圖4—6中兩條對(duì)角線AC和BD把四邊形分成幾個(gè)三角形?

             。3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形。

              我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:

              ①2180=360如圖4

             、4180—360=360如圖4—7。

              例1 已知:如圖48,直線 于B、 于C。

              求證:(1) (2) 。

              本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。

              【總結(jié)、擴(kuò)展】

              1。四邊形的有關(guān)概念。

              2。四邊形對(duì)角線的作用。

              3。四邊形內(nèi)角和定理。

              八、布置作業(yè)

              教材P128中1(1)、2、 3。

              九、板書設(shè)計(jì)

              四邊形(一)

              四邊形有關(guān)概念

              四邊形內(nèi)角和

              例1

              十、隨堂練習(xí)

              教材P122中1、2、3。

            初二數(shù)學(xué)教案2

              教學(xué)建議

              知識(shí)結(jié)構(gòu):

              重點(diǎn)難點(diǎn)分析:

              是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算,利用分母有理化化簡(jiǎn).商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡(jiǎn)和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡(jiǎn)與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡(jiǎn)二次根式化簡(jiǎn)的掌握.

              教學(xué)難點(diǎn)是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號(hào).由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計(jì)算結(jié)果形式.

              教法建議:

              1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對(duì)比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.

              2. 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡(jiǎn)較簡(jiǎn)單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時(shí)討論二次根式的除法法則,并運(yùn)用這一法則進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時(shí)運(yùn)算結(jié)果不包括根號(hào)出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.

              3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵(lì)學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.

              教學(xué)設(shè)計(jì)示例

              一、教學(xué)目標(biāo)

              1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算;

              2.會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;

              3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡(jiǎn)及近似計(jì)算問題;

              4. 培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡(jiǎn)與計(jì)算的能力;

              5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;

              6. 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡(jiǎn)潔性.

              二、教學(xué)重點(diǎn)和難點(diǎn)

              1.重點(diǎn):會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn),會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.

              2.難點(diǎn):二次根式的`除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.

              三、教學(xué)方法

              從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)

              內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對(duì)比.

              四、教學(xué)手段

              利用投影儀.

              五、教學(xué)過程

              (一) 引入新課

              學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)

              學(xué)生觀察下面的例子,并計(jì)算:

              由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

              類似地,每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

              (二)新課

              商的算術(shù)平方根.

              一般地,有 (a0,b0)

              商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.

              讓學(xué)生討論這個(gè)式子成立的條件是什么?a0,b0,對(duì)于為什么b0,要使學(xué)生通過討論明確,因?yàn)閎=0時(shí)分母為0,沒有意義.

              引導(dǎo)學(xué)生從運(yùn)算順序看,等號(hào)左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號(hào)右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個(gè)算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn)與運(yùn)算.

              例1 化簡(jiǎn):

              (1) ; (2) ; (3) ;

              解∶(1)

              (2)

              (3)

              說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時(shí),一般先化成假分?jǐn)?shù);本節(jié)根號(hào)下的字母均為正數(shù).

              例2 化簡(jiǎn):

              (1) ; (2) ;

              解:(1)

              (2)

              讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?

              再總結(jié):這一小節(jié)開始講的二次根式的化簡(jiǎn),只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.

              學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).

              (三)小結(jié)

              1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)

              2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).

              (四)練習(xí)

              1.化簡(jiǎn):

              (1) ; (2) ; (3) .

              2.化簡(jiǎn):

              (1) ; (2) ; (3)

              六、作業(yè)

              教材P.183習(xí)題11.3;A組1.

              七、板書設(shè)計(jì)

            初二數(shù)學(xué)教案3

              一、教學(xué)目標(biāo)

              1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.

              2.掌握矩形的性質(zhì)定理.

              3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力.

              4.通過性質(zhì)的學(xué)習(xí),體會(huì)矩形的應(yīng)用美.

              二、教法設(shè)計(jì)

              觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.

              三、重點(diǎn)、難點(diǎn)及解決辦法

              1.教學(xué)重點(diǎn):矩形的性質(zhì)及其推論.

              2.教學(xué)難點(diǎn):矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.

              四、課時(shí)安排

              1課時(shí)

              五、教具學(xué)具準(zhǔn)備

              教具(一個(gè)活動(dòng)的平行四邊形),投影儀及膠片,常用畫圖工具

              六、師生互動(dòng)活動(dòng)設(shè)計(jì)

              教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證

              七、教學(xué)步驟

              【復(fù)習(xí)提問】

              什么叫平行四邊形?它和四邊形有什么區(qū)別?

              【引入新課】

              我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的特殊性質(zhì),同樣對(duì)于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).

              【講解新課】

              制一個(gè)活動(dòng)的平行四邊形教具,堂上進(jìn)行演示圖,使學(xué)生注意觀察四邊形角的變化,當(dāng)變到一個(gè)角是直角時(shí),指出這時(shí)平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個(gè)角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).

              矩形的性質(zhì):

              既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時(shí)矩形又是特殊的平行四邊形,比平行四邊形多了一個(gè)角是直角的.條件,因而它就增加了一些特殊性質(zhì).

              繼續(xù)演示教具,當(dāng)它變成矩形時(shí),學(xué)生容易看到它的四個(gè)角都是直角;它的對(duì)角線也相等(寫出這兩個(gè)結(jié)論),指出觀察出來的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.

              矩形性質(zhì)定理1:矩形的四個(gè)角都是直角.

              矩形性質(zhì)定理2:矩形對(duì)角線相等.

              由矩形性質(zhì)定理2我們可以得到

              推論:直角三角形斜邊上的中線等于斜邊的一半.

              (這實(shí)際上是 △的一個(gè)重要性質(zhì),即 △斜邊中點(diǎn)到三頂點(diǎn)的距離相等,它在求線段長(zhǎng)或線段部分關(guān)系時(shí)經(jīng)常用到)

              例1 已知如圖1 矩形 的兩條對(duì)角線相交于點(diǎn), , ,求矩形對(duì)角線的長(zhǎng).(按教材的格式)

              (強(qiáng)調(diào)這種計(jì)算題的解題格式,防止學(xué)生離開幾何元素之間的關(guān)系,而單純進(jìn)行代數(shù)計(jì)算)

              【總結(jié)、擴(kuò)展】

              1.小結(jié):(用投影打出)

              (1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.

              (2)矩形性質(zhì).

              1.具有平行四邊形的所有性質(zhì).

              2.特有性質(zhì):四個(gè)角都是直角,對(duì)角線相等.

              3.思考題:已知如圖, 是矩形 對(duì)角線交點(diǎn), 平分 , ,求 的度數(shù)

              八、布置作業(yè)

              教材P158中2、5,P195中7.

              九、板書設(shè)計(jì)

              十、隨堂練習(xí)

              教材P146中1、2、3、4

            初二數(shù)學(xué)教案4

              一、教學(xué)目標(biāo)

              1. 掌握等腰梯形的判定方法.

              2. 能夠運(yùn)用等腰梯形的性質(zhì)和判定進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.

              3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想

              二、教法設(shè)計(jì)

              小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固

              三、重點(diǎn)、難點(diǎn)

              1.教學(xué)重點(diǎn):等腰梯形判定.

              2.教學(xué)難點(diǎn):解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線).

              四、課時(shí)安排

              1課時(shí)

              五、教具學(xué)具準(zhǔn)備

              多媒體,小黑板,常用畫圖工具

              六、師生互動(dòng)活動(dòng)設(shè)計(jì)

              教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線

              七、教學(xué)步驟

              【復(fù)習(xí)提問】

              1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

              2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的'?

              3.在研究解決梯形問題時(shí)的基本思想和方法是什么?常用的輔助線有哪幾種?

              我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個(gè)梯形是否是等腰梯形呢?今天我們就共同來研究這個(gè)問題.

              【引人新課】

              等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形.

              前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

              例1已知:如圖,在梯形 中, , ,求證: .

              分析:我們學(xué)過“如果一個(gè)三角形中有兩個(gè)角相等,那么它們所對(duì)的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個(gè)角轉(zhuǎn)化為等腰三角形的兩個(gè)底角,定理就容易證明了.

              (引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)

              (1)如圖,過點(diǎn) 作 、 ,交 于 ,得 ,所以得 .

              又由 得 ,因此可得 .

              (2)作高 、 ,通過證 推出 .

              (3)分別延長(zhǎng) 、 交于點(diǎn) ,則 與 都是等腰三角形,所以可得 .

              (證明過程略).

              例3 求證:對(duì)角線相等的梯形是等腰梯形.

              已知:如圖,在梯形 中, , .

              求證: .

              分析:證明本題的關(guān)鍵是如何利用對(duì)角線相等的條件來構(gòu)造等腰三角形.

              在 和 中,已有兩邊對(duì)應(yīng)相等,別人要能證 ,就可通過證 得到 .

              (引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)

              證明:過點(diǎn) 作 ,交 延長(zhǎng)線于 ,得 ,

              ∴ .

              ∵ , ∴

              ∴

              ∵ , ∴

              又∵ 、 ,∴

              ∴ .

              說明:如果 、 交于點(diǎn) ,那么由 可得 , ,即等腰梯形對(duì)角線相交,可以得到以交點(diǎn)為頂點(diǎn)的兩個(gè)等腰三角形,這個(gè)結(jié)論雖不能直接引用,但可以為以后解題提供思路.

              例4 畫一等腰梯形,使它上、下底長(zhǎng)分別5cm,高為4cm,并計(jì)算這個(gè)等腰梯形的周長(zhǎng)和面積.

              分析:如圖,先算出 長(zhǎng),可畫等腰三角形 ,然后完成 的畫圖.

              畫法:①畫 ,使 .

              .

             、谘娱L(zhǎng) 到 使 .

             、鄯謩e過 、 作 , , 、 交于點(diǎn) .

              四邊形 就是所求的等腰梯形.

              解:梯形 周長(zhǎng) .

              答:梯形周長(zhǎng)為26cm,面積為 .

              【總結(jié)、擴(kuò)展】

              小結(jié):(由學(xué)生總結(jié))

              (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個(gè)角相等”來判定它是等腰梯形.

              (2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

              八、布置作業(yè)

              l.已知:如圖,梯形 中, , 、 分別為 、 中點(diǎn),且 ,求證:梯形 為等腰梯形.

              九、板書設(shè)計(jì)

              十、隨堂練習(xí)

              教材P177中l(wèi);P179中B組2

            初二數(shù)學(xué)教案5

              一、教學(xué)目標(biāo)

             。ㄒ唬┲R(shí)與技能

              1、會(huì)作已知角的平分線;

              2、了解角的平分線的性質(zhì),能利用三角形全等證明角的平分線的性質(zhì);

              3、會(huì)利用角的平分線的性質(zhì)進(jìn)行證明與計(jì)算。

             。ǘ┻^程與方法

              在探究作角的平分線的方法及角的平分線的性質(zhì)的過程中,進(jìn)一步發(fā)展學(xué)生的推理證明意識(shí)和能力。

              (三)情感、態(tài)度與價(jià)值觀

              在探究作角的平分線的方法及角的.平分線的性質(zhì)的過程中,培養(yǎng)學(xué)生探究問題的興趣、合作交流的意識(shí)、動(dòng)手操作的能力與探索精神,增強(qiáng)解決問題的信心,獲得解決問題的成功體驗(yàn)。

              二、教學(xué)重點(diǎn)、難點(diǎn)

              重點(diǎn):角的平分線的性質(zhì)的證明及應(yīng)用;

              難點(diǎn):角的平分線的性質(zhì)的探究。

              三、教法學(xué)法

              三步導(dǎo)學(xué)的教學(xué)模式;自主探索,合作交流的學(xué)習(xí)方式。

              四、教與學(xué)互動(dòng)設(shè)計(jì)

             。ㄒ唬┘で閷(dǎo)課

              如圖是小明制作的風(fēng)箏,他根據(jù)AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分線,你知道其中的道理嗎?

             。ǘ┟裰鲗(dǎo)學(xué)

              1、探究一:角的平分線的作法

             、瘛⒆h一議

            初二數(shù)學(xué)教案6

              知識(shí)與技能

              1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運(yùn)算。

              2.會(huì)用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡(jiǎn)單的實(shí)際問題。

              3.體驗(yàn)勾股定理的探索過程,會(huì)運(yùn)用勾股定理解決簡(jiǎn)單問題。會(huì)運(yùn)用勾股定理的逆定理判定直角三角形。

              4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明和計(jì)算。

              5.進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義,會(huì)計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會(huì)用它們表示數(shù)據(jù)的波動(dòng)情況。

              過程與方法

              進(jìn)一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達(dá)能力;解決一些實(shí)際問題,體會(huì)化歸思想和函數(shù)的'變化與對(duì)應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實(shí)事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動(dòng)中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨(dú)立思考,主動(dòng)探索的習(xí)慣。

              情感、態(tài)度與價(jià)值觀

              豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)和體驗(yàn),通過對(duì)問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對(duì)知識(shí)方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對(duì)教學(xué)活動(dòng)中的困難,能通過合作交流解決遇到的困難。

            初二數(shù)學(xué)教案7

              一、教材分析1、特點(diǎn)與地位:重點(diǎn)中的重點(diǎn)。本課是教材求兩結(jié)點(diǎn)之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運(yùn)輸、通訊網(wǎng)絡(luò)等方面具有一定的實(shí)用意義。

              2、重點(diǎn)與難點(diǎn):結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問題的自身特點(diǎn),確立本課的重點(diǎn)和難點(diǎn)如下:

              (1)重點(diǎn):如何將現(xiàn)實(shí)問題抽象成求解最短路徑問題,以及該問題的解決方案。(2)難點(diǎn):求解最短路徑算法的程序?qū)崿F(xiàn)。3、教學(xué)安排:最短路徑問題包含兩種情況:一種是求從某個(gè)源點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,另一種是求每一對(duì)結(jié)點(diǎn)之間的最短路徑。根據(jù)教學(xué)大綱安排,重點(diǎn)講解第一種情況問題的解決。安排一個(gè)課時(shí)講授。教材直接分析算法,考慮實(shí)際應(yīng)用需要,補(bǔ)充旅游景點(diǎn)線路選擇的實(shí)例,實(shí)例中問題解決與算法分析相結(jié)合,逐步推動(dòng)教學(xué)過程。

              二、教學(xué)目標(biāo)分析1、知識(shí)目標(biāo):掌握最短路徑概念、能夠求解最短路徑。2、能力目標(biāo):(1)通過將旅游景點(diǎn)線路選擇問題抽象成求最短路徑問題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。(2)通過旅游景點(diǎn)線路選擇問題的解決,培養(yǎng)學(xué)生的獨(dú)立思考、分析問題、解決問題的能力。3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。

              三、教法分析課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時(shí)輔以多媒體課件,以啟發(fā)的方式展開教學(xué)。由于本節(jié)課的內(nèi)容屬于圖這一章的難點(diǎn),考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進(jìn)度是本節(jié)課成功的關(guān)鍵。

              四、學(xué)法指導(dǎo)1、課前上次課結(jié)課時(shí)給學(xué)生布置任務(wù),使其有針對(duì)性的預(yù)習(xí)。2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識(shí)點(diǎn)。3、課后給學(xué)生布置同類型任務(wù),加強(qiáng)練習(xí)。

              五、教學(xué)過程分析(一)課前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。教學(xué)方法及注意事項(xiàng):(1)采用提問方式,注意及時(shí)小結(jié),提問的目的`是幫助學(xué)生回憶概念。(2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

              (二)導(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個(gè)點(diǎn)間最短距離的實(shí)際需要,引出本課教學(xué)內(nèi)容“求最短路徑問題”。教學(xué)方法及注意事項(xiàng):(1)先講實(shí)例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實(shí)現(xiàn)教學(xué)內(nèi)容的自然過渡。(2)此處使用案例教學(xué)法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

              (三)講授新課(25~30分鐘)1、求某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑(重點(diǎn))主要采用案例教學(xué)法,提出旅游景點(diǎn)選擇的例子,解決如何選擇代價(jià)小、景點(diǎn)多的路線。(1)將實(shí)際問題抽象成圖中求任一結(jié)點(diǎn)到其他結(jié)點(diǎn)最短路徑問題。(3~5分鐘)教學(xué)方法及注意事項(xiàng):①主要采用講授法,將實(shí)際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號(hào)表示某一景點(diǎn),用箭頭表示從某景點(diǎn)到其他景點(diǎn)是否存在旅游線路,并且將旅途費(fèi)用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。②注意示范畫圖只進(jìn)行一部分,讓學(xué)生獨(dú)立思考、自主完成余下部分的轉(zhuǎn)化。③及時(shí)總結(jié),原型抽象(景點(diǎn)作為圖的結(jié)點(diǎn),景點(diǎn)間的線路作為圖的邊,旅途費(fèi)用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑問題。④利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。

              教學(xué)方法及注意事項(xiàng):①啟發(fā)式教學(xué),如何實(shí)現(xiàn)按路徑長(zhǎng)度遞增產(chǎn)生最短路徑?②結(jié)合案例分析求解最短路徑過程中(重點(diǎn))注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨(dú)立思考完成。

              (四)課堂小結(jié)(3~5分鐘)1、明確本節(jié)課重點(diǎn)

              2、提示學(xué)生,這種方式形成的圖又可以解決哪類實(shí)際問題呢?

              (五)布置作業(yè)1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時(shí)間安排。六、教學(xué)特色以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動(dòng)起來。在順利開展教學(xué)的同時(shí),體現(xiàn)所講內(nèi)容的實(shí)用性,提高學(xué)生的學(xué)習(xí)興趣。

            初二數(shù)學(xué)教案8

              教學(xué)目標(biāo)

              1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計(jì)量的直方圖;

              2、讓學(xué)生進(jìn)一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

              教學(xué)重點(diǎn)

              掌握頻率分布直方圖概念及其應(yīng)用;

              教學(xué)難點(diǎn)

              繪制連續(xù)統(tǒng)計(jì)量的直方圖

              教學(xué)過程

             、瘢岢鰡栴},創(chuàng)設(shè)情境,引入新課:

              問題:我們班準(zhǔn)備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個(gè)想法可以實(shí)現(xiàn)嗎?應(yīng)該選擇身高在哪個(gè)范圍的學(xué)生參加?

              63名學(xué)生的身高數(shù)據(jù)如下:

              158158160168159159151158159

              168158154158154169158158158

              159167170153160160159159160

              149163163162172161153156162

              162163157162162161157157164

              155156165166156154166164165

              156157153165159157155164156

              解:(確定組距)最大值為172,最小值為149,他們的差為23

              (身高x的變化范圍在23厘米,)

              (分組劃記)頻數(shù)分布表:

              身高(x)劃記頻數(shù)(學(xué)生人數(shù))

              149≤x

              152≤x

              155≤x

              158≤x

              161≤

              164≤x

              167≤x

              170≤x

              從表中看,身高在155≤x

              (繪制頻數(shù)分布直方圖如課本P72圖12.2-3)

              探究:上面對(duì)數(shù)據(jù)分組時(shí),組距取3,把數(shù)據(jù)分成8個(gè)組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個(gè)組,這樣做能否選出身高比較整齊的隊(duì)員?

              分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊(duì)員。

              歸納:組距和組數(shù)的'確定沒有固定的標(biāo)準(zhǔn),要憑借經(jīng)驗(yàn)和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當(dāng)數(shù)據(jù)在100個(gè)以內(nèi)時(shí),根據(jù)數(shù)據(jù)的多少通常分為5~12個(gè)組。

              我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。

              首先取直方圖中每一個(gè)長(zhǎng)方形上邊的中草藥點(diǎn),然后在橫軸上取兩個(gè)頻數(shù)為0的點(diǎn),在上方圖的左邊。147、5,0),在直方圖的右邊取點(diǎn)(174、5,0),將這些點(diǎn)用線段依次連接起來,就得到頻數(shù)折線圖。

              頻數(shù)折線圖也可以不通過直方圖直接畫出。

              根據(jù)表12.2-2,求了各個(gè)小組兩個(gè)端點(diǎn)的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標(biāo),各小組對(duì)應(yīng)的頻數(shù)為縱坐標(biāo)描點(diǎn),另外再在橫軸上取兩個(gè)點(diǎn),依次連接這些點(diǎn),就得到頻數(shù)分布折線圖如課本P73圖。

              II課堂小結(jié):

             。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

             。2)組距和組數(shù)沒有確定標(biāo)準(zhǔn),當(dāng)數(shù)據(jù)在1000個(gè)以內(nèi)時(shí),通常分成5~12組

              (3)如果取個(gè)長(zhǎng)方形上邊的中點(diǎn),可以得到頻數(shù)折線圖

             。4)求各小組兩個(gè)斷點(diǎn)的平均數(shù),這些平均數(shù)叫組中值。

            初二數(shù)學(xué)教案9

              一、班級(jí)情況分析:

              本學(xué)期一(1)班有學(xué)生40人,新轉(zhuǎn)學(xué)來一名女生。上學(xué)期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學(xué)生成績(jī)?cè)谀昙?jí)排名第一,能過鎮(zhèn)中線,但是學(xué)生未能發(fā)揮出真實(shí)水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。

              一(7)班有學(xué)生38人,上學(xué)期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學(xué)生不多不夠拔尖,成績(jī)中層的學(xué)生占據(jù)大部分。學(xué)生好動(dòng),對(duì)數(shù)學(xué)學(xué)習(xí)的積極性普遍不夠高,學(xué)生好動(dòng),課堂氣氛較活躍。學(xué)生數(shù)學(xué)基礎(chǔ)不扎實(shí)。提升空間較大。

              兩班的整體成績(jī)均不夠理想。

              二、教材分析:

              本套教材切合《標(biāo)準(zhǔn)》的課程目標(biāo),有以下特點(diǎn):

              1.為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn),提供大量數(shù)學(xué)活動(dòng)的線索,成為供所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。

              2.向?qū)W生提供現(xiàn)實(shí)、有趣、富有挑戰(zhàn)性的學(xué)習(xí)素材。所有數(shù)學(xué)知識(shí)的學(xué)習(xí),都力求從學(xué)生實(shí)際出發(fā),以他們熟悉或感興趣的問題情境引入學(xué)習(xí)主題,并展開數(shù)學(xué)探究。

              3.為學(xué)生提供探索、交流的時(shí)間和空間。設(shè)立了“做一做”、“想一想”、“議一議”等欄目,以使學(xué)生通過自主探索與合作交流,形成新的知識(shí)。

              4.展現(xiàn)數(shù)學(xué)知識(shí)的形成與應(yīng)用過程,讓學(xué)生經(jīng)歷真正的“做數(shù)學(xué)”、“用數(shù)學(xué)”的過程。

              5.滿足不同學(xué)生發(fā)展的需求。

              三、教學(xué)目標(biāo)及要求:

              第一章:

              1.經(jīng)歷用字母表示數(shù)量關(guān)系的過程,在現(xiàn)實(shí)情境中進(jìn)一步理解字母表示數(shù)的意義,發(fā)展符號(hào)感。

              2.經(jīng)歷探索整式運(yùn)算法則的過程,理解整式運(yùn)算的算理,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力。

              3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運(yùn)算性質(zhì),會(huì)進(jìn)行簡(jiǎn)單的整式加、減、乘、除運(yùn)算。

              4.會(huì)推導(dǎo)乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

              第二章:

              1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進(jìn)一步發(fā)展空間觀念、推理能力和有條理表達(dá)的能力。

              2.在具體情境中了解補(bǔ)角、余角、對(duì)頂角,知道等角的余角相等、等角的補(bǔ)角相等、對(duì)頂角相等。會(huì)用三角尺過已知直線外一點(diǎn)畫這條直線的平行線;會(huì)用尺規(guī)作一條線段等于已知線段、作一個(gè)角等于已知角。

              3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的特征。

              4.進(jìn)一步激發(fā)學(xué)生對(duì)數(shù)學(xué)方面的興趣,體驗(yàn)從數(shù)學(xué)的角度認(rèn)識(shí)現(xiàn)實(shí)。

              第三章:

              1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學(xué)記數(shù)法表示它們,進(jìn)一步發(fā)展數(shù)感;能借助計(jì)算器進(jìn)行有關(guān)科學(xué)記數(shù)法的計(jì)算。

              2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會(huì)近似數(shù)的意義及在生活中的作用。

              3.通過實(shí)例,體驗(yàn)收集、整理、描述和分析數(shù)據(jù)的過程。

              4.能讀懂統(tǒng)計(jì)圖并從中獲取信息,能形象、有效地運(yùn)用統(tǒng)計(jì)圖描述數(shù)據(jù)。

              第四章:

              1.經(jīng)歷從實(shí)際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。

              2.體會(huì)等可能性與游戲規(guī)則的公平性,抽象出概率模型,計(jì)算概率,解決實(shí)際、作出合理決策的過程,體會(huì)概率是描述不確定現(xiàn)象的數(shù)學(xué)模型。

              3.能設(shè)計(jì)符合要求的簡(jiǎn)單概率模型。

              第五章:

              1.通過觀察、操作、想象、推理、交流等活動(dòng),發(fā)展空間觀念,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。

              2.在探索圖形性質(zhì)的過程中,發(fā)展推理能力和有條理的表達(dá)能力。

              3.進(jìn)一步認(rèn)識(shí)三角形的有關(guān)概念,了解三邊之間的關(guān)系以及三角形的內(nèi)角和,了解三角形的穩(wěn)定性。

              4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個(gè)三角形全等的條件,能應(yīng)用三角形的全等解決一些實(shí)際問題。

              5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。

              第六章:

              1.經(jīng)歷探索具體情境中兩個(gè)變量之間的關(guān)系的過程,進(jìn)一步發(fā)展符號(hào)感和抽象思維。

              2.能發(fā)現(xiàn)實(shí)際情境中的變量及其相互關(guān)系,并確定其中的`自變量或因變量。

              3.能從表格、圖象中分析出某些變量之間的關(guān)系,并能用自己的語言進(jìn)行表達(dá),發(fā)展有條理地進(jìn)行思考和表達(dá)的能力。

              4.能根據(jù)具體問題,選取用表格或關(guān)系式來表示某些變量之間的關(guān)系,并結(jié)合對(duì)變量之間關(guān)系的分析,嘗試對(duì)變化趨勢(shì)進(jìn)行初步的預(yù)測(cè)。

              第七章:

              1.在豐富的現(xiàn)實(shí)情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設(shè)計(jì)等數(shù)學(xué)活動(dòng)過程,進(jìn)一步發(fā)展空間觀念。

              2.通過豐富的生活實(shí)例認(rèn)識(shí)軸對(duì)稱,探索它的基本性質(zhì),理解對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分的性質(zhì)。

              3.探索并了解基本圖形的軸對(duì)稱性及其相關(guān)性質(zhì)。

              4.能夠按要求作出簡(jiǎn)單平面圖形經(jīng)過軸對(duì)稱后的圖形,探索簡(jiǎn)單圖形之間的軸對(duì)稱關(guān)系,并能指出對(duì)稱軸。

              5.欣賞現(xiàn)實(shí)生活中的軸對(duì)稱圖形,能利用軸對(duì)稱進(jìn)行一些圖案設(shè)計(jì),體驗(yàn)軸對(duì)稱在現(xiàn)實(shí)生活中的廣泛應(yīng)用和豐富的文化價(jià)值。

              四、教學(xué)改革的設(shè)想(教學(xué)具體措施)

              充分體現(xiàn)培優(yōu)扶困的實(shí)施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實(shí)做到:

              1、根據(jù)學(xué)生的個(gè)別差異。因材施教,熱情關(guān)懷,循循善誘,加強(qiáng)個(gè)別輔導(dǎo)。幫助他們?cè)鰪?qiáng)學(xué)習(xí)的信心,逐步達(dá)到教學(xué)的基本要求,盡量做好培優(yōu)輔差工作。

              2、精心設(shè)計(jì)練習(xí),講究練習(xí)方式提高練習(xí)效率,對(duì)作業(yè)嚴(yán)格要求,及時(shí)檢查,認(rèn)真批改,對(duì)作業(yè)中的錯(cuò)誤及時(shí)找出原因,要求學(xué)生認(rèn)真改正,培養(yǎng)學(xué)生獨(dú)立完成作業(yè)的良好習(xí)慣。

              3、認(rèn)真?zhèn)湔n,深入鉆研教材,堅(jiān)持自主學(xué)習(xí),充分發(fā)揮學(xué)生的主動(dòng)學(xué)習(xí)有積極性,了解學(xué)生裝學(xué)習(xí)數(shù)學(xué)的特點(diǎn),研究教學(xué)規(guī)律,不斷改進(jìn)教學(xué)方法。

              4、堅(jiān)持學(xué)習(xí),多聽課,多模仿,虛心向有經(jīng)驗(yàn)的老師請(qǐng)教教育教學(xué)方法。努力提升自身的教學(xué)技能。

              5、在教學(xué)中,加強(qiáng)學(xué)生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學(xué)活動(dòng)課,擴(kuò)大學(xué)生的視野,拓寬知識(shí)面,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展數(shù)學(xué)才能,發(fā)揮學(xué)生的主動(dòng)性,獨(dú)立性和創(chuàng)造性。

              6、開展“一幫一”活動(dòng),實(shí)行以優(yōu)帶差點(diǎn)的幫助方法,多利用課余時(shí)間加強(qiáng)輔導(dǎo),從基礎(chǔ)知識(shí)補(bǔ)起,力求使學(xué)生一課一得,力求提高優(yōu)秀率和及格率。

              7.課前充分備好課,在課堂教學(xué)中特別要體現(xiàn)出培扶,分層次教育。

              8.重視學(xué)生學(xué)習(xí)興趣的培養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的內(nèi)驅(qū)力。

              9.大膽地深度嘗試新的教學(xué)方法,要因地制宜,因材施教。

              10.重視基礎(chǔ)知識(shí)過關(guān)和單元測(cè)試過關(guān)工作,及時(shí)進(jìn)行單元總結(jié),做好平時(shí)的查漏補(bǔ)缺工作,不遺漏知識(shí)盲點(diǎn)。

              11.注重對(duì)作業(yè)、練習(xí)紙、練習(xí)冊(cè)、測(cè)驗(yàn)卷的及時(shí)批改,并盡量做到全批全改,及時(shí)反饋信息。

              12.多用多媒體教學(xué),使數(shù)學(xué)生動(dòng)化。

              13.多用實(shí)物教學(xué),使數(shù)學(xué)形象化。

              14.實(shí)行課課清,日日清,周周清。

              15.加強(qiáng)課堂管理,嚴(yán)把課堂質(zhì)量關(guān),提高課堂效率。

              16.抓好學(xué)生的作業(yè)上交完成情況。

              17.加強(qiáng)與學(xué)生的交流,做好學(xué)生的思想教育與培優(yōu)輔差工作。

              五、擬定本學(xué)期教學(xué)目標(biāo)

              六、擬定本學(xué)期培優(yōu)扶養(yǎng)計(jì)劃。

              培扶措施

              對(duì)臨界優(yōu)秀生

              在理解題、思維訓(xùn)練題給予方法指導(dǎo),并要加強(qiáng)書面的表達(dá)能力。做到思路清晰,格式標(biāo)準(zhǔn);A(chǔ)訓(xùn)練題的過關(guān)檢測(cè),對(duì)每次測(cè)試的成績(jī)給予個(gè)別指導(dǎo),多用激勵(lì)教育。

              對(duì)臨界及格生:

              首先加強(qiáng)基礎(chǔ)知識(shí)的培訓(xùn),尤其要在選擇題、填空題多下功夫。在課堂上、課后對(duì)他們多加注意,及時(shí)糾正錯(cuò)誤。抓好每次單元過關(guān)測(cè)試工作,抓好時(shí)機(jī),多表揚(yáng),樹立信心。

              七、教學(xué)內(nèi)容及課時(shí)安排(略)

              八、作業(yè)格式及批改要求:

              作業(yè)格式:

              1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。

              2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。

              3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。

              批改要求:

              1.每題作業(yè)都要有批改的痕跡,錯(cuò)的打“×”,對(duì)的打“√”,書寫要清晰,明確看出錯(cuò)對(duì)。

              2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分?jǐn)?shù)+等級(jí)(等級(jí)分A、B、C三等,代表學(xué)生的書寫成績(jī)。)

              3、每次的作業(yè)要及時(shí)更正,更正時(shí)統(tǒng)一在每次的作業(yè)后面用紅筆更正。

            初二數(shù)學(xué)教案10

              一、教材分析:

              勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。

              教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

              據(jù)此,制定教學(xué)目標(biāo)如下:

              1、理解并掌握勾股定理及其證明。

              2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

              3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

              4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

              二、教學(xué)重點(diǎn):

              勾股定理的證明和應(yīng)用。

              三、教學(xué)難點(diǎn):

              勾股定理的證明。

              四、教法和學(xué)法:

              教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

              切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

              通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

              五、教學(xué)程序:

              本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

              (一)創(chuàng)設(shè)情境以古引新

              1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

              2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

              3、板書課題,出示學(xué)習(xí)目標(biāo)。(二)初步感知理解教材

              教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

              (三)質(zhì)疑解難討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;(1)這兩個(gè)圖形有什么特點(diǎn)?(2)你能寫出這兩個(gè)圖形的面積嗎?

              (3)如何運(yùn)用勾股定理?是否還有其他形式?

              這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對(duì)問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

              (四)鞏固練習(xí)強(qiáng)化提高

              1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

              2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

              (五)歸納總結(jié)練習(xí)反饋

              引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

              本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

              六、教學(xué)目標(biāo):

              1.經(jīng)歷運(yùn)用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動(dòng)中發(fā)展學(xué)生的探究意識(shí)和合作交流的習(xí)慣。

              2.掌握勾股定理和他的簡(jiǎn)單應(yīng)用

              重點(diǎn)難點(diǎn):

              重點(diǎn):能熟練運(yùn)用拼圖的方法證明勾股定理

              難點(diǎn):用面積證勾股定理

              教學(xué)過程

              七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

              我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個(gè)實(shí)例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請(qǐng)大家畫四個(gè)全等的.直角三角形,并把它剪下來,用這四個(gè)直角三角形,拼一拼、擺一擺,看看能否得到一個(gè)含有以斜邊c為邊長(zhǎng)的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

              (同學(xué)們回答有這幾種可能:(1) (2) )

              在同學(xué)交流形成共識(shí)之后,教師把這兩種表示大正方形面積的式子用等號(hào)連接起來。

              =請(qǐng)同學(xué)們對(duì)上面的式子進(jìn)行化簡(jiǎn),得到:即=

              這就可以從理論上說明勾股定理存在。請(qǐng)同學(xué)們?nèi)ビ脛e的拼圖方法說明勾股定理。

              八、講例

              1.飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛機(jī)飛到一個(gè)男孩頭頂正上方4000多米處,過20秒,飛機(jī)距離這個(gè)男孩頭頂5000米,飛機(jī)每時(shí)飛行多少千米?

              分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機(jī)每小時(shí)飛行多少千米,就要知道飛機(jī)在20秒的時(shí)間里的飛行路程,即圖中的CB的長(zhǎng),由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

              解:由勾股定理得

              即BC=3千米飛機(jī)20秒飛行3千米,那么它1小時(shí)飛行的距離為:

              答:飛機(jī)每個(gè)小時(shí)飛行540千米。

              九、議一議

              展示投影2(書中的圖1—9)

              觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長(zhǎng)是否滿足

              同學(xué)在議論交流形成共識(shí)之后,老師總結(jié)。

              勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

              十、作業(yè)

              1、 1、課文P11§1.2 1 、2

              2、選用作業(yè)。

            初二數(shù)學(xué)教案11

              新課指南

              1、知識(shí)與技能:

              (1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;

              (2)掌握整式、同類項(xiàng)及合并同類項(xiàng)法則和去括號(hào)法則;

              (3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力。

              2、過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會(huì)列簡(jiǎn)單的代數(shù)式。在具體情境中體會(huì)同類項(xiàng)的意義及合并同類項(xiàng)、去括號(hào)法則的必要性,總結(jié)合并同類項(xiàng)及去括號(hào)的.法則,并利用它們進(jìn)行整式的加減運(yùn)算和解決簡(jiǎn)單的實(shí)際問題。

              3、情感態(tài)度與價(jià)值觀:通過對(duì)整式加減的學(xué)習(xí),深入體會(huì)代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識(shí)打下良好的基礎(chǔ),同時(shí),也使我們體會(huì)到數(shù)學(xué)知識(shí)的產(chǎn)生來源于實(shí)際生產(chǎn)和生活的需求,反之,它又服務(wù)于實(shí)際生活的方方面面。

              4、重點(diǎn)與難點(diǎn):重點(diǎn)是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項(xiàng)的法則和去括號(hào)的法則。難點(diǎn)是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識(shí)別整式的項(xiàng)、系數(shù)等知識(shí)。

              教材解讀精華要義

              數(shù)學(xué)與生活

              如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長(zhǎng)方形地面,在第n個(gè)圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊。

              思考討論由圖15-1可以看到,當(dāng)n=1時(shí),一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時(shí),一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時(shí),一橫行有6塊瓷磚,一豎列有5塊瓷磚。綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個(gè)圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊。這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?

              知識(shí)詳解

              知識(shí)點(diǎn)1代數(shù)式

              用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)。的字母連接起來的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

              例如:5,a,(a+b),ab,a2-2ab+b2等等。

              知識(shí)點(diǎn)2列代數(shù)式時(shí)應(yīng)該注意的問題

              (1)數(shù)與字母、字母與字母相乘時(shí)常省略“×”號(hào)或用“·”。

              如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

             。2)數(shù)字通常寫在字母前面。

              如:mn×(-5)=-5mn,3×(a+b)=3(a+b)。

             。3)帶分?jǐn)?shù)與字母相乘時(shí)要化成假分?jǐn)?shù)。

              如:2×ab=ab,切勿錯(cuò)誤寫成“2ab”。

              (4)除法常寫成分?jǐn)?shù)的形式。

              如:S÷x=。

            初二數(shù)學(xué)教案12

              教學(xué)目標(biāo)

              知識(shí)與技能目標(biāo)

              1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

              2.掌握平行四邊形的判別條件;對(duì)角線互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形。

              3.逐步掌握說理的基本方法。

              過程與方法目標(biāo)

              1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識(shí),主動(dòng)探索的.習(xí)慣。

              2.鼓勵(lì)學(xué)生用多種方法進(jìn)行說理。

              情感與態(tài)度目標(biāo)

              1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

              2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強(qiáng)學(xué)生的自我評(píng)價(jià)意識(shí)。

              教材分析

              教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。

              教學(xué)重點(diǎn):平行四邊形的判別方法。

              教學(xué)難點(diǎn):利用平行四邊形的判別方法進(jìn)行正確的說理。

              學(xué)情分析

              初二學(xué)生對(duì)平面圖形的認(rèn)識(shí)能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識(shí)處于現(xiàn)象描述和說理的過渡時(shí)期。因此,對(duì)這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會(huì)正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

              教學(xué)流程

              一、創(chuàng)設(shè)情境,引入新課

              師:請(qǐng)同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

              學(xué)生活動(dòng):學(xué)生按小組進(jìn)行探索。

            初二數(shù)學(xué)教案13

              初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié):等腰三角形

              一、等腰三角形的性質(zhì):

              1、等腰三角形兩腰相等.

              2、等腰三角形兩底角相等(等邊對(duì)等角)。

              3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

              4、等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條)。

              5、等邊三角形的性質(zhì):

              ①等邊三角形三邊都相等.

             、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于60°

              ③等邊三角形每條邊上都存在三線合一.

             、艿冗吶切问禽S對(duì)稱圖形,對(duì)稱軸是三線合一(3條).

              6.基本判定:

             、诺妊切蔚腵判定:

             、儆袃蓷l邊相等的三角形是等腰三角形.

             、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).

              ⑵等邊三角形的判定:

             、偃龡l邊都相等的三角形是等邊三角形.

             、谌齻(gè)角都相等的三角形是等邊三角形.

              ③有一個(gè)角是60°的等腰三角形是等邊三角形.

            初二數(shù)學(xué)教案14

              新課指南

              1.知識(shí)與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項(xiàng)及合并同類項(xiàng)法則和去括號(hào)法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.

              2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會(huì)列簡(jiǎn)單的代數(shù)式.在具體情境中體會(huì)同類項(xiàng)的意義及合并同類項(xiàng)、去括號(hào)法則的必要性,總結(jié)合并同類項(xiàng)及去括號(hào)的法則,并利用它們進(jìn)行整式的加減運(yùn)算和解決簡(jiǎn)單的實(shí)際問題.

              3.情感態(tài)度與價(jià)值觀:通過對(duì)整式加減的學(xué)習(xí),深入體會(huì)代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識(shí)打下良好的基礎(chǔ),同時(shí),也使我們體會(huì)到數(shù)學(xué)知識(shí)的產(chǎn)生來源于實(shí)際生產(chǎn)和生活的需求,反之,它又服務(wù)于實(shí)際生活的方方面面.

              4.重點(diǎn)與難點(diǎn):重點(diǎn)是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項(xiàng)的法則和去括號(hào)的法則.難點(diǎn)是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識(shí)別整式的項(xiàng)、系數(shù)等知識(shí).

              教材解讀精華要義

              數(shù)學(xué)與生活

              如圖15-1所示,用同樣規(guī)格的`黑、白兩色的正方形瓷磚鋪長(zhǎng)方形地面,在第n個(gè)圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.

              思考討論由圖15-1可以看到,當(dāng)n=1時(shí),一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時(shí),一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時(shí),一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個(gè)圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?

              知識(shí)詳解

              知識(shí)點(diǎn)1代數(shù)式

              用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式.

              例如:5,a,(a+b),ab,a2-2ab+b2等等.

              知識(shí)點(diǎn)2列代數(shù)式時(shí)應(yīng)該注意的問題

              (1)數(shù)與字母、字母與字母相乘時(shí)常省略“×”號(hào)或用“·”.

              如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

              (2)數(shù)字通常寫在字母前面.

              如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

              (3)帶分?jǐn)?shù)與字母相乘時(shí)要化成假分?jǐn)?shù).

              如:2×ab=ab,切勿錯(cuò)誤寫成“2ab”.

              (4)除法常寫成分?jǐn)?shù)的形式.

              如:S÷x=.

            初二數(shù)學(xué)教案15

              知識(shí)技能

              1、了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì)。

              2、探究線段垂直平分線的性質(zhì)。

              過程方法

              1、經(jīng)歷探索軸對(duì)稱圖形性質(zhì)的過程,進(jìn)一步體驗(yàn)軸對(duì)稱的特點(diǎn),發(fā)展空間觀察。

              2、探索線段垂直平分線的.性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。

              情感態(tài)度價(jià)值觀通過對(duì)軸對(duì)稱圖形性質(zhì)的探索,促使學(xué)生對(duì)軸對(duì)稱有了更進(jìn)一步的認(rèn)識(shí),活動(dòng)與探究的過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,并使學(xué)生具有一些初步研究問題的能力。

              教學(xué)重點(diǎn)

              1、軸對(duì)稱的性質(zhì)。

              2、線段垂直平分線的性質(zhì)。

              教學(xué)難點(diǎn)體驗(yàn)軸對(duì)稱的特征。

              教學(xué)方法和手段多媒體教學(xué)

              過程教學(xué)內(nèi)容

              引入中垂線概念

              引出圖形對(duì)稱的性質(zhì)第一張幻燈片

              上節(jié)課我們共同探討了軸對(duì)稱圖形,知道現(xiàn)實(shí)生活中由于有軸對(duì)稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對(duì)稱的性質(zhì)。

              幻燈片二

              1、圖中的對(duì)稱點(diǎn)有哪些?

              2、點(diǎn)A和A的連線與直線MN有什么樣的關(guān)系?

              理由?:△ABC與△ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對(duì)折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點(diǎn)。

              我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

              定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的'垂直平分線,也叫中垂線。

            【初二數(shù)學(xué)教案】相關(guān)文章:

            初二數(shù)學(xué)教案11-02

            《矩形》初二的數(shù)學(xué)教案12-02

            【推薦】初二數(shù)學(xué)教案12-23

            初二數(shù)學(xué)教案【熱】12-24

            初二數(shù)學(xué)教案【推薦】12-18

            【薦】初二數(shù)學(xué)教案12-19

            初二數(shù)學(xué)教案【薦】12-22

            【熱】初二數(shù)學(xué)教案12-23

            初二數(shù)學(xué)教案【熱門】12-22

            初二數(shù)學(xué)教案【精】12-20