亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

            八年級(jí)數(shù)學(xué)教案

            時(shí)間:2024-06-23 07:41:46 八年級(jí)數(shù)學(xué)教案 我要投稿

            八年級(jí)數(shù)學(xué)教案15篇【推薦】

              作為一名辛苦耕耘的教育工作者,通常會(huì)被要求編寫(xiě)教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。怎樣寫(xiě)教案才更能起到其作用呢?以下是小編為大家整理的八年級(jí)數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

            八年級(jí)數(shù)學(xué)教案15篇【推薦】

            八年級(jí)數(shù)學(xué)教案1

              教學(xué)目標(biāo):

              1.了解軸對(duì)稱(chēng)圖形和兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng)的概念.

              2.能識(shí)別簡(jiǎn)單的軸對(duì)稱(chēng)圖形及其對(duì)稱(chēng)軸(直線(xiàn)),能找出兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng)的對(duì)稱(chēng)點(diǎn).

              3.了解軸對(duì)稱(chēng)圖形與兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng)的區(qū)別和聯(lián)系.

              教學(xué)重點(diǎn):

              1、軸對(duì)稱(chēng)圖形和兩個(gè)圖形成軸對(duì)稱(chēng)的概念;

              2、探索軸對(duì)稱(chēng)的性質(zhì)。

              教學(xué)難點(diǎn):

              1、能夠識(shí)別軸對(duì)稱(chēng)圖形并找出它的對(duì)稱(chēng)軸;

              2、能運(yùn)用其性質(zhì)解答簡(jiǎn)單的幾何問(wèn)題。

              教學(xué)方法啟發(fā)誘導(dǎo)法

              教具準(zhǔn)備多媒體課件,剪刀,彩色紙

              教學(xué)過(guò)程

              一、情境導(dǎo)入

              同學(xué)們,自古以來(lái),對(duì)稱(chēng)圖形被認(rèn)為是和諧、美麗的.不論在自然界里還是在建筑中,不論在藝術(shù)中還是在科學(xué)中,甚至最普通的日常生活用品中,對(duì)稱(chēng)圖形隨處可見(jiàn),對(duì)稱(chēng)給我們帶來(lái)了美的感受!而軸對(duì)稱(chēng)是對(duì)稱(chēng)中很重要的一種,今天就讓我們一起走進(jìn)軸對(duì)稱(chēng)世界,探索它的秘密吧!

              我們先來(lái)看一下這節(jié)課的學(xué)習(xí)目標(biāo)

              1.了解軸對(duì)稱(chēng)圖形和兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng)的概念.

              2.能識(shí)別簡(jiǎn)單的軸對(duì)稱(chēng)圖形及其對(duì)稱(chēng)軸,能找出兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng)的對(duì)稱(chēng)點(diǎn).

              3.了解軸對(duì)稱(chēng)圖形與兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng)的區(qū)別和聯(lián)系.

              二、自主探究

              【探究一】

             。ㄒ唬┪覀兿葋(lái)看幾幅圖片,觀(guān)察它們都有些什么共同特征.

              1、它們都是對(duì)稱(chēng)的.

              2、它們沿著某條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能完全重合。

             。ǘ﹦(dòng)畫(huà)展示蝴蝶的折疊過(guò)程

             。ㄈ┳鲆蛔

              1.準(zhǔn)備一張紙;

              2.對(duì)折紙;

              3.用鉛筆在紙上畫(huà)出你喜歡的圖案;

              4.剪下你畫(huà)的圖案;

              5.把紙打開(kāi)鋪平,觀(guān)察所得的.圖案,位于折痕兩側(cè)的部分有什么關(guān)系?

              【答】能互相重合一模一樣是對(duì)稱(chēng)的

              從而得出軸對(duì)稱(chēng)圖形的概念:

              如果一個(gè)圖形沿著一條直線(xiàn)折疊,只限兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱(chēng)圖形。這條直線(xiàn)就是它的對(duì)稱(chēng)軸。我們說(shuō)這個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)。

            八年級(jí)數(shù)學(xué)教案2

              一、教學(xué)目標(biāo)

              ①經(jīng)歷探索整式除法運(yùn)算法則的過(guò)程,會(huì)進(jìn)行簡(jiǎn)單的整式除法運(yùn)算(只要求單項(xiàng)式除以單項(xiàng)式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨(dú)立思考、集體協(xié)作的能力。

             、诶斫庹匠ǖ乃憷,發(fā)展有條理的思考及表達(dá)能力。

              二、教學(xué)重點(diǎn)與難點(diǎn)

              重點(diǎn):整式除法的運(yùn)算法則及其運(yùn)用。

              難點(diǎn):整式除法的運(yùn)算法則的推導(dǎo)和理解,尤其是單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。

              三、教學(xué)準(zhǔn)備

              卡片及多媒體課件。

              四、教學(xué)設(shè)計(jì)

              (一)情境引入

              教科書(shū)第161頁(yè)問(wèn)題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?

              重點(diǎn)研究算式(1。90×1024)÷(5。98×1021)怎樣進(jìn)行計(jì)算,目的是給出下面兩個(gè)單項(xiàng)式相除的`模型。

              注:教科書(shū)從實(shí)際問(wèn)題引入單項(xiàng)式的除法運(yùn)算,學(xué)生在探索這個(gè)問(wèn)題的過(guò)程中,將自然地體會(huì)到學(xué)習(xí)單項(xiàng)式的除法運(yùn)算的必要性,了解數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,同時(shí)再次經(jīng)歷感受較大數(shù)據(jù)的過(guò)程。

             。ǘ┨骄啃轮

             。1)計(jì)算(1。90×1024)÷(5。98×1021),說(shuō)說(shuō)你計(jì)算的根據(jù)是什么?

              (2)你能利用(1)中的方法計(jì)算下列各式嗎?

              8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

             。3)你能根據(jù)(2)說(shuō)說(shuō)單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?

              注:教師可以鼓勵(lì)學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運(yùn)用自己的語(yǔ)言進(jìn)行描述。

              單項(xiàng)式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進(jìn)行。探究活動(dòng)的安排,是使學(xué)生通過(guò)對(duì)具體的特例的計(jì)算,歸納出單項(xiàng)式的除法運(yùn)算性質(zhì),并能運(yùn)用乘除互逆的關(guān)系加以說(shuō)明,也可類(lèi)比分?jǐn)?shù)的約分進(jìn)行。在這些活動(dòng)過(guò)程中,學(xué)生的化歸、符號(hào)演算等代數(shù)推理能力和有條理的表達(dá)能力得到進(jìn)一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強(qiáng)調(diào)的。

             。ㄈw納法則

              單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。

              注:通過(guò)總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語(yǔ)言表達(dá)自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

             。ㄋ模⿷(yīng)用新知

              例2計(jì)算:

             。1)28x4y2÷7x3y;

              (2)—5a5b3c÷15a4b。

              首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號(hào)。對(duì)本例可以采用學(xué)生口述,教師板書(shū)的形式完成?谑龊桶鍟(shū)都應(yīng)注意展示法則的應(yīng)用,計(jì)算過(guò)程要詳盡,使學(xué)生盡快熟悉法則。

              注:?jiǎn)雾?xiàng)式除以單項(xiàng)式,既要對(duì)系數(shù)進(jìn)行運(yùn)算,又要對(duì)相同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對(duì)只在一個(gè)單項(xiàng)式里含有的冪要加以注意,這些對(duì)剛剛接觸整式除法的學(xué)生來(lái)講,難免會(huì)出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問(wèn)題。

              鞏固新知教科書(shū)第162頁(yè)練習(xí)1及練習(xí)2。

              學(xué)生自己嘗試完成計(jì)算題,同桌交流。

              注:在獨(dú)立解題和同伴的相互交流過(guò)程中讓學(xué)生自己去體會(huì)法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動(dòng)參與學(xué)習(xí)的習(xí)慣。

              (五)作業(yè)

              1、必做題:教科書(shū)第164頁(yè)習(xí)題15。3第1題;第2題。

              2、選做題:教科書(shū)第164頁(yè)習(xí)題15。3第8題

            八年級(jí)數(shù)學(xué)教案3

              一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過(guò)一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過(guò)4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡(jiǎn)化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問(wèn)題,由方程的根確定方程的系數(shù)的方法等等。

              根與系數(shù)的關(guān)系也稱(chēng)為韋達(dá)定理(韋達(dá)是法國(guó)數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^(guò)韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問(wèn)題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。

              通過(guò)近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來(lái),形成難度系數(shù)較大的壓軸題。

              通過(guò)韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問(wèn)題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。

              (二)重點(diǎn)、難點(diǎn)

              一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的.關(guān)系,并用語(yǔ)言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。

              (三)教學(xué)目標(biāo)

              1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。

            八年級(jí)數(shù)學(xué)教案4

              菱形

              學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

              1.經(jīng)歷探索菱形的識(shí)別方法的過(guò)程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;

              2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.

              補(bǔ)充例題:

              例1. 如圖,在△ABC中,AD是△ABC的角平分線(xiàn)。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說(shuō)明你的理由.

              例2.如圖,平行四邊形ABCD的對(duì) 角線(xiàn)AC的'垂直平分線(xiàn)與邊AD、BC分別交于E、F.

              四邊形AFCE是菱形嗎?說(shuō)明理由.

              例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在A(yíng)C上,設(shè)F、H分別是B、D落在A(yíng)C上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)

              (1)試說(shuō)明四邊形AECG是平行四邊形;

              (2)若AB=4cm,BC=3cm,求線(xiàn)段EF的長(zhǎng);

              (3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時(shí),四邊形AECG是菱形.

              課后續(xù)助:

              一、填空題

              1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

              2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),

              且DE∥BA,DF∥ CA

              (1)要使四邊形AFDE是菱形,則要增加條件______________________

              (2)要使四邊形AFDE是矩形,則要增加條件______________________

              二、解答題

              1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說(shuō)明理由。

              2.如圖 ,平行四邊形A BCD的兩條對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.

              (1) AC,BD互相垂直嗎?為什么?

              (2) 四邊形ABCD是菱形 嗎?

              3.如圖,在□ABCD中,已知ADAB,ABC的平分線(xiàn)交AD于E,EF∥AB交BC于F,試問(wèn): 四 邊形ABFE是菱形嗎?請(qǐng)說(shuō)明理由。

              4.如圖,把一張矩形的紙ABCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.

             、徘笞C:ABF≌

              ⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說(shuō)明理由.

            八年級(jí)數(shù)學(xué)教案5

              教材分析

              1、本小節(jié)內(nèi)容安排在第十四章“軸對(duì)稱(chēng)”的第三節(jié)。等腰三角形是一種特殊的三角形,它是軸對(duì)稱(chēng)圖形,可以借助軸對(duì)稱(chēng)變換來(lái)研究等腰三角形的一些特殊性質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識(shí),重點(diǎn)是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線(xiàn)段相等角相等的重要依據(jù),這也是全章的重點(diǎn)之一。

              2、本節(jié)重在呈現(xiàn)一個(gè)動(dòng)手操作得出概念、觀(guān)察實(shí)驗(yàn)得出性質(zhì)、推理證明論證性質(zhì)的過(guò)程,學(xué)生通過(guò)學(xué)習(xí),既體會(huì)到一個(gè)觀(guān)察、實(shí)驗(yàn)、猜想、論證的研究幾何圖形問(wèn)題的全過(guò)程,又能夠運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問(wèn)題,提高運(yùn)用知識(shí)和技能解決問(wèn)題的能力。

              學(xué)情分析

              1、學(xué)生在此之前已接觸過(guò)等腰三角形,具有運(yùn)用全等三角形的判定及軸對(duì)稱(chēng)的知識(shí)和技能,本節(jié)教學(xué)要突出“自主探究”的特點(diǎn),即教師引導(dǎo)學(xué)生通過(guò)觀(guān)察、實(shí)驗(yàn)、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新知、獲得新知的樂(lè)趣。

              2、在與等腰三角形有關(guān)的一些命題的證明過(guò)程中,會(huì)遇到一些添加輔助線(xiàn)的問(wèn)題,這會(huì)給學(xué)生的學(xué)習(xí)帶來(lái)困難。另外,以前學(xué)生證明問(wèn)題是習(xí)慣于找全等三角形,形成了依賴(lài)全等三角形的思維定勢(shì),對(duì)于可直接利用等腰三角形性質(zhì)的'問(wèn)題,沒(méi)有注意選擇簡(jiǎn)便方法。

              教學(xué)目標(biāo)

              知識(shí)技能:1、理解掌握等腰三角形的性質(zhì)。

              2、運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。

              數(shù)學(xué)思考:1、觀(guān)察等腰三角形的對(duì)稱(chēng)性,發(fā)展形象思維。

              2、通過(guò)時(shí)間、觀(guān)察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。

              情感態(tài)度:引導(dǎo)學(xué)生對(duì)圖形的觀(guān)察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。

              教學(xué)重點(diǎn)和難點(diǎn)

              重點(diǎn):等腰三角形的性質(zhì)及應(yīng)用。

              難點(diǎn):等腰三角形的性質(zhì)證明。

            八年級(jí)數(shù)學(xué)教案6

              學(xué)習(xí)目標(biāo)

              1、通過(guò)運(yùn)算多項(xiàng)式乘法,來(lái)推導(dǎo)平方差公式,學(xué)生的認(rèn)識(shí)由一般法則到特殊法則的能力。

              2、通過(guò)親自動(dòng)手、觀(guān)察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。

              3、初步學(xué)會(huì)運(yùn)用平方差公式進(jìn)行計(jì)算。

              學(xué)習(xí)重難點(diǎn)重點(diǎn):

              平方差公式的推導(dǎo)及應(yīng)用。

              難點(diǎn)是對(duì)公式中a,b的廣泛含義的理解及正確運(yùn)用。

              自學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)

              看一看

              認(rèn)真閱讀教材,記住以下知識(shí):

              文字?jǐn)⑹銎椒讲罟剑篲________________

              用字母表示:________________

              做一做:

              1、完成下列練習(xí):

             、(m+n)(p+q)

              ②(a+b)(x-y)

             、(2x+3y)(a-b)

              ④(a+2)(a-2)

             、(3-x)(3+x)

              ⑥(2m+n)(2m-n)

              想一想

              你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

              _______________________________

              _______________________________

              ________________________________、

              1、下列計(jì)算對(duì)不對(duì)?若不對(duì),請(qǐng)?jiān)跈M線(xiàn)上寫(xiě)出正確結(jié)果、

              (1)(x-3)(x+3)=x2-3( ),__________;

              (2)(2x-3)(2x+3)=2x2-9( ),_________;

              (3)(-x-3)(x-3)=x2-9( ),_________;

              (4)(2xy-1)(2xy+1)=2xy2-1( ),________、

              2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

              (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、

              3、計(jì)算:50×49=_________、

              應(yīng)用探究

              1、幾何解釋平方差公式

              展示:邊長(zhǎng)a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形。

              (1)請(qǐng)計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的.面積公式計(jì)算)。

              (2)小明將陰影部分拼成一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形長(zhǎng)與寬是多少?你能表示出它的面積嗎?

              2、用平方差公式計(jì)算

              (1)103×93 (2)59、8×60、2

              拓展提高

              1、閱讀題:

              我們?cè)谟?jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算、解答過(guò)程如下:

              原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

              =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

              =(24-1)(24+1)(28+1)(216+1)(232+1)

              =……=264-1

              你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請(qǐng)?jiān)囋嚳?

              2、仔細(xì)觀(guān)察,探索規(guī)律:

              (x-1)(x+1)=x2-1

              (x-1)(x2+x+1)=x3-1

              (x-1)(x3+x2+x+1)=x4-1

              (x-1)(x4+x3+x2+x+1)=x5-1

              ……

              (1)試求25+24+23+22+2+1的值;

              (2)寫(xiě)出22006+22005+22004+…+2+1的個(gè)位數(shù)、

              堂堂清

              一、選擇題

              1、下列各式中,能用平方差公式計(jì)算的是( )

              (1)(a-2b)(-a+2b);

              (2)(a-2b)(-a-2b);

              (3)(a-2b)(a+2b);

              (4)(a-2b)(2a+b)、

            八年級(jí)數(shù)學(xué)教案7

              一、教學(xué)目標(biāo):

              1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

              2、能力目標(biāo):

             、,在實(shí)踐操作過(guò)程中,逐步探索圖形之間的平移關(guān)系;

              ②,對(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過(guò)對(duì)“基本圖案”的平移,復(fù)制所求的圖形;

              3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀(guān)察、分析、欣賞和動(dòng)手操作、畫(huà)圖等過(guò)程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。

              二、重點(diǎn)與難點(diǎn):

              重點(diǎn):圖形連續(xù)變化的特點(diǎn);

              難點(diǎn):圖形的劃分。

              三、教學(xué)方法:

              講練結(jié)合。使用多媒體課件輔助教學(xué)。

              四、教具準(zhǔn)備:

              多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

              五、教學(xué)設(shè)計(jì):

              創(chuàng)設(shè)情景,探究新知:

              (演示課件):教材上小狗的圖案。提問(wèn):

              (1)這個(gè)圖案有什么特點(diǎn)?

              (2)它可以通過(guò)什么“基本圖案”,經(jīng)過(guò)怎樣的`平移而形成?

              (3)在平移過(guò)程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

              小組討論,派代表回答。(答案可以多種)

              讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。

              看磁性黑板,展示教材64頁(yè)圖3-9,提問(wèn):左圖是一個(gè)正六邊形,它經(jīng)過(guò)怎樣的平移能得到右圖?誰(shuí)到黑板做做看?

              小組討論,派代表到臺(tái)上給大家講解。

              氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。

              暢所欲言,互相補(bǔ)充。

              課堂小結(jié):

              在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周?chē)鷮ふ移揭频睦印?/p>

              課堂練習(xí):

              小組討論。

              小組討論完成。

              例子一定要和大家接觸緊密、典型。

              答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。

              六、教學(xué)反思:

              本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀(guān)、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過(guò)程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。

            八年級(jí)數(shù)學(xué)教案8

              一、內(nèi)容和內(nèi)容解析

              1.內(nèi)容

              二次根式的性質(zhì)。

              2.內(nèi)容解析

              本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀(guān)察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

              對(duì)于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

              二、目標(biāo)和目標(biāo)解析

              1.教學(xué)目標(biāo)

              (1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;

             。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

              (3)了解代數(shù)式的概念.

              2.目標(biāo)解析

             。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

             。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

             。3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

              三、教學(xué)問(wèn)題診斷分析

              二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問(wèn)題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

              本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

              四、教學(xué)過(guò)程設(shè)計(jì)

              1.探究性質(zhì)1

              問(wèn)題1 你能解釋下列式子的含義嗎?

              師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.

              【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

              問(wèn)題2 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).

              師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的.依據(jù).

              【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

              問(wèn)題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

              師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

              【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

              例2 計(jì)算

             。1) ;(2) .

              師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

              【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

              2.探究性質(zhì)2

              問(wèn)題4 你能解釋下列式子的含義嗎?

              師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.

              【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

              問(wèn)題5 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).

              師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).

              【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

              問(wèn)題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

              師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

              【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

              例3 計(jì)算

             。1) ;(2) .

              師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

              【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

              3.歸納代數(shù)式的概念

              問(wèn)題7 回顧我們學(xué)過(guò)的式子,如, ( ≥0),這些式子有哪些共同特征?

              師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

              【設(shè)計(jì)意圖】學(xué)生通過(guò)觀(guān)察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

              4.綜合運(yùn)用

             。1)算一算:

              【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

              (2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

              【設(shè)計(jì)意圖】通過(guò)此問(wèn)題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

              (3)談一談你對(duì) 與 的認(rèn)識(shí).

              【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.

              5.總結(jié)反思

             。1)你知道了二次根式的哪些性質(zhì)?

              (2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?

             。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過(guò)程?

             。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類(lèi)字母表示數(shù)得到的式子?說(shuō)說(shuō)你對(duì)代數(shù)式的認(rèn)識(shí).

              6.布置作業(yè):教科書(shū)習(xí)題16.1第2,4題.

              五、目標(biāo)檢測(cè)設(shè)計(jì)

              1. ; ; .

              【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.

              2.下列運(yùn)算正確的是( )

              A. B. C. D.

              【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.

              3.若 ,則 的取值范圍是 .

              【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

              4.計(jì)算: .

              【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

            八年級(jí)數(shù)學(xué)教案9

              一、教學(xué)目標(biāo):

              1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、

              2、掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、

              3、會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、

              二、教學(xué)重點(diǎn):

              掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、

              三、難點(diǎn):

              會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、

              四、情感態(tài)度與價(jià)值觀(guān):

              通過(guò)學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來(lái)源于實(shí)踐,服務(wù)于實(shí)踐、能利用事物之間的類(lèi)比性解決問(wèn)題、

              五、教學(xué)過(guò)程:

             。ㄒ唬┱n堂引入

              1、回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));

              2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1、

              3、你還記得1納米=10?9米,即1納米=米嗎?

              4、計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的`運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、

             。ǘ┛偨Y(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來(lái)看這條性質(zhì)是否成立、 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的、

              (三)科學(xué)記數(shù)法:

              我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來(lái)表示,例如:0.000012 = 1.2×10?5.即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)、 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1、

            八年級(jí)數(shù)學(xué)教案10

              ●教學(xué)目標(biāo)

              (一)教學(xué)知識(shí)點(diǎn)

              1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個(gè)三角形是否相似.

              2.能根據(jù)相似比進(jìn)行計(jì) 算.

              (二)能力訓(xùn)練要求

              1.能根據(jù)定義判斷兩個(gè)三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.

              2.能根據(jù)相似比求長(zhǎng)度和角度,培養(yǎng)學(xué)生的運(yùn)用能力.

              (三)情感與價(jià)值觀(guān)要求

              通過(guò)與相似多邊形有關(guān)概念的類(lèi)比,滲透類(lèi)比的教學(xué)思想,并領(lǐng)會(huì)特殊與一般的'關(guān)系.

              ●教學(xué)重點(diǎn) 相似三角形的定義及運(yùn)用.

              ●教學(xué)難點(diǎn) 根據(jù)定義求線(xiàn)段長(zhǎng)或角的度數(shù).

              ●教學(xué)過(guò)程

             、.創(chuàng)設(shè)問(wèn)題情境,引入新課

              今天, 我們就來(lái)研究相似三角形.

              Ⅱ.新課講解

              1.相似三角形的定義及記法

              三角對(duì)應(yīng)相等,三邊 對(duì)應(yīng)成比例的兩個(gè)三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

              其中對(duì)應(yīng)頂點(diǎn)要寫(xiě)在對(duì)應(yīng)位置,如A與D,B與E,C與F相對(duì)應(yīng).AB∶DE等于相似比.

              2.想一想

              如果△ABC∽△DEF,那么哪些角是對(duì)應(yīng)角?哪些邊是對(duì)應(yīng)邊?對(duì)應(yīng) 角 有什么關(guān)系?對(duì)應(yīng)邊呢?

              所以 D、E、F. .

              3.議一議,學(xué)生討論

              (1)兩個(gè)全等三角形一定相似嗎?為什么?

              (2)兩個(gè)直角三角 形一 定相似嗎?兩個(gè)等腰直角三角形呢?為 什么?

              (3)兩個(gè)等腰三角形一定相似嗎?兩個(gè)等邊三角形呢?為什么?

              結(jié)論:兩 個(gè)全等三角形一定相似.

              兩個(gè) 等腰直角三角形一定相似.兩個(gè)等邊三角形一定相似.兩個(gè)直角三角形和兩個(gè)等腰三角形不一定相似.

              4.例題

              例1、有一塊呈三角形形狀 的草坪,其中一邊的長(zhǎng)是20 m,在這個(gè)草坪的圖紙上,這條邊長(zhǎng)5 cm,其他兩邊的 長(zhǎng)都是3.5 cm,求該草坪其他兩邊的實(shí)際長(zhǎng)度.

              例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

              ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長(zhǎng).

              5.想一想

              在例2的條件下,圖中有哪些線(xiàn)段成比例?

             、.課堂練習(xí) P129

              Ⅳ.課時(shí)小結(jié)

              相似三角形的 判定方法定義法.

             、.課后作業(yè)

            八年級(jí)數(shù)學(xué)教案11

              學(xué)習(xí)目標(biāo)

              1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對(duì)稱(chēng)、伸長(zhǎng)、壓縮)之間的關(guān)系并能找出變化規(guī)律。

              2、由坐標(biāo)的變化探索新舊圖形之間的變化。

              重點(diǎn)

              1、 作某一圖形關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)圖形,并能寫(xiě)出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。

              2、 根據(jù)軸對(duì)稱(chēng)圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

              難點(diǎn)

              體會(huì)極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡(jiǎn)單的問(wèn)題

              學(xué)習(xí)過(guò)程(導(dǎo)入、探究新知、即時(shí)練習(xí)、小結(jié)、達(dá)標(biāo)檢測(cè)、作業(yè))

              第一課時(shí)

              學(xué)習(xí)過(guò)程:

              一、舊知回顧:

              1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。

              2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。

              3、各象限點(diǎn)的坐標(biāo)的特征:

              二、新知檢索:

              1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),

              (3,0),(4,-2), (0,0)并用線(xiàn)段依次連接,觀(guān)察形成了什么圖形

              三、典例分析

              例1、

              (1) 將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

              (2)將魚(yú)的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

              例2、(1)將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉?lái)的2倍畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?

              (2)將魚(yú)的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉?lái)的1/2畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?

              四、題組訓(xùn)練

              1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線(xiàn)段依次連接起來(lái)形成一個(gè)圖案。

              (1)這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來(lái)的1/2,將所得的四個(gè)點(diǎn)用線(xiàn)段依次連接起來(lái),所得圖案與原來(lái)圖案相比有什么變化?

              (2)縱、橫分別加3呢?

              (3)縱、橫分別變成原來(lái)的2倍呢?

              歸納:圖形坐標(biāo)變化規(guī)律

              1、 平移規(guī)律:2、圖形伸長(zhǎng)與壓縮:

              第二課時(shí)

              一、舊知回顧:

              1、軸對(duì)稱(chēng)圖形定義:如果一個(gè)圖形沿著 對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱(chēng)圖形。

              中心對(duì)稱(chēng)圖形定義:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱(chēng)圖形

              二、新知檢索:

              1、如圖,左邊的魚(yú)與右邊的.魚(yú)關(guān)于y軸對(duì)稱(chēng)。

              1、左邊的魚(yú)能由右邊的魚(yú)通過(guò)平移、壓縮或拉伸而得到嗎?

              2、各個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?

              3、如果將圖中右邊的魚(yú)沿x軸正方向平移1個(gè)單位長(zhǎng)度,為保持整個(gè)圖形關(guān)于y軸對(duì)稱(chēng),那么左邊的魚(yú)各個(gè)頂點(diǎn)的坐標(biāo)將發(fā)生怎樣的變化?

              三、典例分析,如圖所示,

              1、右圖的魚(yú)是通過(guò)什么樣的變換得到 左圖的魚(yú)的。

              2、如果將右邊的魚(yú)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉?lái)的1倍,畫(huà)出圖形,得到的魚(yú)與原來(lái)的魚(yú)有什么樣的位置關(guān)系。

              3、如果將右邊的魚(yú)的縱、橫坐標(biāo)都分別變?yōu)樵瓉?lái)的1倍,得到的魚(yú)與原來(lái)的魚(yú)有什么樣的位置關(guān)系

              四、題組練習(xí)

              1、將坐標(biāo)作如下變化時(shí),圖形將怎樣變化?

             、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

              ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

              2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫(xiě)出第二象限中蝴蝶各個(gè)頂點(diǎn)的坐標(biāo)。

              3、 如圖,作字母M關(guān)于y軸的軸對(duì)稱(chēng)圖形,并寫(xiě)出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。

              4、 描出下圖中楓葉圖案關(guān)于x軸的軸對(duì)稱(chēng)圖形的簡(jiǎn)圖。

              學(xué)習(xí)筆記

            八年級(jí)數(shù)學(xué)教案12

              【教學(xué)目標(biāo)】

              知識(shí)目標(biāo):

              解單項(xiàng)式乘以多項(xiàng)式的意義,理解單項(xiàng)式與多項(xiàng)式的乘法法則,會(huì)進(jìn)行單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算。

              能力目標(biāo):

             。1)經(jīng)歷探索乘法運(yùn)算法則的過(guò)程,發(fā)展觀(guān)察、歸納、猜測(cè)、驗(yàn)證等能力;

              (2)體會(huì)乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。

              情感目標(biāo):

              充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、主動(dòng)性

              【教學(xué)重點(diǎn)】

              單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算

              【教學(xué)難點(diǎn)】

              推測(cè)整式乘法的運(yùn)算法則。

              【教學(xué)過(guò)程】

              一、復(fù)習(xí)引入

              通過(guò)對(duì)已學(xué)知識(shí)的復(fù)習(xí)引入課題(學(xué)生作答)

              1.請(qǐng)說(shuō)出單項(xiàng)式與單項(xiàng)式相乘的法則:

              單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個(gè)因式。

              (系數(shù)×系數(shù))×(同字母冪相乘)×單獨(dú)的冪

              例如:( 2a2b3c) (-3ab)

              解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

              = -6a3b4c

              2.說(shuō)出多項(xiàng)式2x2-3x-1的`項(xiàng)和各項(xiàng)的系數(shù)項(xiàng)分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1

              問(wèn):如何計(jì)算單項(xiàng)式與多項(xiàng)式相乘?例如:2a2· (3a2 - 5b)該怎樣計(jì)算?

              這便是我們今天要研究的問(wèn)題。

              二、新知探究

              已知一長(zhǎng)方形長(zhǎng)為(a+b+c),寬為m,則面積為:m(a+b+c)

              現(xiàn)將這個(gè)長(zhǎng)方形分割為寬為m,長(zhǎng)分別為a、b、c的三個(gè)小長(zhǎng)方形,其面積之和為ma+mb+mc因?yàn)榉指钋昂箝L(zhǎng)方形沒(méi)變所以m(a+b+c)=ma+mb+mc

              上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個(gè)別同學(xué)作答,教師作評(píng))

              結(jié)論單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則:

              用單項(xiàng)式分別去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

              用字母表示為:m(a+b+c)=ma+mb+mc

              運(yùn)算思路:單×多

              轉(zhuǎn)化

              分配律

              單×單

              三、例題講解

              例計(jì)算:(1)(-2a2)· (3ab2– 5ab3)

             。2)(- 4x) ·(2x2+3x-1)

              解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

              (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

            八年級(jí)數(shù)學(xué)教案13

              知識(shí)結(jié)構(gòu):

              重點(diǎn)與難點(diǎn)分析:

              本節(jié)內(nèi)容的重點(diǎn)是等腰三角形的判定定理.本定理是證明兩條線(xiàn)段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線(xiàn)段相等提供了又一種方法,這是本節(jié)的重點(diǎn).推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

              本節(jié)內(nèi)容的難點(diǎn)是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,經(jīng)常混淆,幫助學(xué)生認(rèn)識(shí)判定與性質(zhì)的區(qū)別,這是本節(jié)的難點(diǎn).另外本節(jié)的文字?jǐn)⑹鲱}也是難點(diǎn)之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識(shí)點(diǎn)的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時(shí)從條件得到用哪個(gè)定理及如何用.

              教法建議:

              本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過(guò)多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵(lì)學(xué)生討論解決問(wèn)題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說(shuō)明如下:

              (1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程

              學(xué)生學(xué)習(xí)過(guò)互逆命題和互逆定理的概念,首先提出問(wèn)題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來(lái)問(wèn):此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),滿(mǎn)打滿(mǎn)算了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì)。

              (2)采用“類(lèi)比”的學(xué)習(xí)方法,獲取知識(shí)。

              由性質(zhì)定理的學(xué)習(xí),我們得到了幾個(gè)推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說(shuō)哪些推論呢?這里先讓學(xué)生發(fā)表意見(jiàn),然后大家共同分析討論,把一些有價(jià)值的、甚至就是教材中的推論板書(shū)出來(lái)。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c(diǎn)撥引導(dǎo)。

              (3)總結(jié),形成知識(shí)結(jié)構(gòu)

              為了使學(xué)生對(duì)本節(jié)課有一個(gè)完整的認(rèn)識(shí),便于今后的應(yīng)用,教師提出如下問(wèn)題,讓學(xué)生思考回答:(1)怎樣判定一個(gè)三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個(gè)三角形是等邊三角形?

              一.教學(xué)目標(biāo):

              1.使學(xué)生掌握等腰三角形的判定定理及其推論;

              2.掌握等腰三角形判定定理的運(yùn)用;

              3.通過(guò)例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問(wèn)題解決問(wèn)題的能力;

              4.通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

              5.通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.

              二.教學(xué)重點(diǎn):等腰三角形的判定定理

              三.教學(xué)難點(diǎn):性質(zhì)與判定的區(qū)別

              四.教學(xué)用具:直尺,微機(jī)

              五.教學(xué)方法:以學(xué)生為主體的.討論探索法

              六.教學(xué)過(guò)程:

              1、新課背景知識(shí)復(fù)習(xí)

              (1)請(qǐng)同學(xué)們說(shuō)出互逆命題和互逆定理的概念

              估計(jì)學(xué)生能用自己的語(yǔ)言說(shuō)出,這里重點(diǎn)復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。

              (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗(yàn)它的逆命題是否為真命題?

              啟發(fā)學(xué)生用自己的語(yǔ)言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

              1.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等.

              (簡(jiǎn)稱(chēng)“等角對(duì)等邊”).

              由學(xué)生說(shuō)出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言的方法.

              已知:如圖,△ABC中,∠B=∠C.

              求證:AB=AC.

              教師可引導(dǎo)學(xué)生分析:

              聯(lián)想證有關(guān)線(xiàn)段相等的知識(shí)知道,先需構(gòu)成以AB、AC為對(duì)應(yīng)邊的全等三角形.因?yàn)橐阎螧=∠C,沒(méi)有對(duì)應(yīng)相等邊,所以需添輔助線(xiàn)為兩個(gè)三角形的公共邊,因此輔助線(xiàn)應(yīng)從A點(diǎn)引起.再讓學(xué)生回想等腰三角形中常添的輔助線(xiàn),學(xué)生可找出作∠BAC的平分線(xiàn)AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

              注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

              (2)不能說(shuō)“一個(gè)三角形兩底角相等,那么兩腰邊相等”,因?yàn)檫未判定它是一個(gè)等腰三角形.

              (3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

              2.推論1:三個(gè)角都相等的三角形是等邊三角形.

              推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形.

              要讓學(xué)生自己推證這兩條推論.

              小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

              證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

              3.應(yīng)用舉例

              例1.求證:如果三角形一個(gè)外角的平分線(xiàn)平行于三角形的一邊,那么這個(gè)三角形是等腰三角形.

              分析:讓學(xué)生畫(huà)圖,寫(xiě)出已知求證,啟發(fā)學(xué)生遇到已知中有外角時(shí),常?紤]應(yīng)用外角的兩個(gè)特性①它與相鄰的內(nèi)角互補(bǔ);②它等于與它不相鄰的兩個(gè)內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因?yàn)橐阎?=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

              已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

              求證:AB=AC.

              證明:(略)由學(xué)生板演即可.

              補(bǔ)充例題:(投影展示)

              1.已知:如圖,AB=AD,∠B=∠D.

              求證:CB=CD.

              分析:解具體問(wèn)題時(shí)要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個(gè)以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

              證明:連結(jié)BD,在 中, (已知)

              (等邊對(duì)等角)

              (已知)

              即

              (等教對(duì)等邊)

              小結(jié):求線(xiàn)段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線(xiàn)構(gòu)造三角形,找出邊角關(guān)系.

              2.已知,在 中, 的平分線(xiàn)與 的外角平分線(xiàn)交于D,過(guò)D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

              分析:對(duì)于三個(gè)線(xiàn)段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個(gè)角平分線(xiàn)和平行線(xiàn),可以通過(guò)角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

              證明: DE//BC(已知)

              ,

              BE=DE,同理DF=CF.

              EF=DE-DF

              EF=BE-CF

              小結(jié):

              (1)等腰三角形判定定理及推論.

              (2)等腰三角形和等邊三角形的證法.

              七.練習(xí)

              教材 P.75中1、2、3.

              八.作業(yè)

              教材 P.83 中 1.1)、2)、3);2、3、4、5.

              九.板書(shū)設(shè)計(jì)

            八年級(jí)數(shù)學(xué)教案14

              一.教學(xué)目標(biāo):

              1.了解方差的定義和計(jì)算公式。

              2.理解方差概念的產(chǎn)生和形成的過(guò)程。

              3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。

              二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

              1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問(wèn)題。

              2.難點(diǎn):理解方差公式

              3.難點(diǎn)的突破方法:

              方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。

              (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過(guò)程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。

              (2)波動(dòng)性可以通過(guò)什么方式表現(xiàn)出來(lái)?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法?梢援(huà)折線(xiàn)圖方法來(lái)反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫(huà)折線(xiàn)圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來(lái)描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。

              (3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋?zhuān)▌?dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過(guò)對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。

              三.例習(xí)題的意圖分析:

              1.教材P125的討論問(wèn)題的意圖:

              (1).創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

              (2).為引入方差概念和方差計(jì)算公式作鋪墊。

              (3).介紹了一種比較直觀(guān)的衡量數(shù)據(jù)波動(dòng)大小的方法——畫(huà)折線(xiàn)法。

              (4).客觀(guān)上反映了在解決某些實(shí)際問(wèn)題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。

              2.教材P154例1的設(shè)計(jì)意圖:

              (1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的'規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。

              (2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類(lèi)似的實(shí)際問(wèn)題。

              四.課堂引入:

              除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過(guò)學(xué)生觀(guān)看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問(wèn)題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

              五.例題的分析:

              教材P154例1在分析過(guò)程中應(yīng)抓住以下幾點(diǎn):

              1.題目中“整齊”的含義是什么?說(shuō)明在這個(gè)問(wèn)題中要研究一組數(shù)據(jù)的什么?學(xué)生通過(guò)思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。

              2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問(wèn)題可以使學(xué)生明確利用方差計(jì)算步驟。

              3.方差怎樣去體現(xiàn)波動(dòng)大小?

              這一問(wèn)題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。

              六.隨堂練習(xí):

              1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)

              甲:9、10、11、12、7、13、10、8、12、8;

              乙:8、13、12、11、10、12、7、7、9、11;

              問(wèn):(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?

              (2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?

              2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆l(shuí)的成績(jī)比較穩(wěn)定?為什么?

              測(cè)試次數(shù)1 2 3 4 5

              段巍13 14 13 12 13

              金志強(qiáng)10 13 16 14 12

              參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

              2.段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。

              七.課后練習(xí):

              1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

              2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

              甲:7、8、6、8、6、5、9、10、7、4

              乙:9、5、7、8、7、6、8、6、7、7

              經(jīng)過(guò)計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

              3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )

              甲:0、1、0、2、2、0、3、1、2、4

              乙:2、3、1、2、0、2、1、1、2、1

              分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?

              4.小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)

              小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

              小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

              如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰(shuí)呢?

              答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好

              4. =10.9、S =0.02;

              =10.9、S =0.008

              選擇小兵參加比賽。

            八年級(jí)數(shù)學(xué)教案15

              教學(xué)建議

              知識(shí)結(jié)構(gòu)

              重難點(diǎn)分析

              本節(jié)的重點(diǎn)是中位線(xiàn)定理.三角形中位線(xiàn)定理和梯形中位線(xiàn)定理不但給出了三角形或梯形中線(xiàn)段的位置關(guān)系,而且給出了線(xiàn)段的數(shù)量關(guān)系,為平面幾何中證明線(xiàn)段平行和線(xiàn)段相等提供了新的思路.

              本節(jié)的難點(diǎn)是中位線(xiàn)定理的證明.中位線(xiàn)定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線(xiàn),添加的目的性和必要性,同以前遇到的情況對(duì)比有一定的難度.

              教法建議

              1. 對(duì)于中位線(xiàn)定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀(guān)察、猜想、測(cè)量、論證,實(shí)際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

              2.對(duì)于定理的證明,有條件的教師可考慮利用多媒體課件來(lái)進(jìn)行演示知識(shí)的形成及證明過(guò)程,效果可能會(huì)更直接更易于理解

              教學(xué)設(shè)計(jì)示例

              一、教學(xué)目標(biāo)

              1.掌握中位線(xiàn)的概念和三角形中位線(xiàn)定理

              2.掌握定理“過(guò)三角形一邊中點(diǎn)且平行另一邊的直線(xiàn)平分第三邊”

              3.能夠應(yīng)用三角形中位線(xiàn)概念及定理進(jìn)行有關(guān)的論證和計(jì)算,進(jìn)一步提高學(xué)生的計(jì)算能力

              4.通過(guò)定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問(wèn)題和解決問(wèn)題的能力

              5. 通過(guò)一題多解,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣

              二、教學(xué)設(shè)計(jì)

              畫(huà)圖測(cè)量,猜想討論,啟發(fā)引導(dǎo).

              三、重點(diǎn)、難點(diǎn)

              1.教學(xué)重點(diǎn):三角形中位線(xiàn)的概論與三角形中位線(xiàn)性質(zhì).

              2.教學(xué)難點(diǎn):三角形中位線(xiàn)定理的證明.

              四、課時(shí)安排

              1課時(shí)

              五、教具學(xué)具準(zhǔn)備

              投影儀、膠片、常用畫(huà)圖工具

              六、教學(xué)步驟

              【復(fù)習(xí)提問(wèn)】

              1.敘述平行線(xiàn)等分線(xiàn)段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫(huà)出草圖,結(jié)合圖形,加以說(shuō)明).

              2.說(shuō)明定理的.證明思路.

              3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點(diǎn),AM、CN分別交BD于點(diǎn)E、F,如何證明 ?

              分析:要證三條線(xiàn)段相等,一般情況下證兩兩線(xiàn)段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線(xiàn)等分線(xiàn)段定理即可證出.

              4.什么叫三角形中線(xiàn)?(以上復(fù)習(xí)用投影儀打出)

              【引入新課】

              1.三角形中位線(xiàn):連結(jié)三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形中位線(xiàn).

              (結(jié)合三角形中線(xiàn)的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫(huà)出中線(xiàn)、中位線(xiàn))

              2.三角形中位線(xiàn)性質(zhì)

              了解了三角形中位線(xiàn)的定義后,我們來(lái)研究一下,三角形中位線(xiàn)有什么性質(zhì).

              如圖所示,DE是 的一條中位線(xiàn),如果過(guò)D作 ,交AC于 ,那么根據(jù)平行線(xiàn)等分線(xiàn)段定理推論2,得 是AC的中點(diǎn),可見(jiàn) 與DE重合,所以 .由此得到:三角形中位線(xiàn)平行于第三邊.同樣,過(guò)D作 ,且DE FC,所以DE .因此,又得出一個(gè)結(jié)論,那就是:三角形中位線(xiàn)等于第三邊的一半.由此得到三角形中位線(xiàn)定理.

              三角形中位線(xiàn)定理:三角形中位城平行于第三邊,并且等于它的一半.

              應(yīng)注意的兩個(gè)問(wèn)題:①為便于同學(xué)對(duì)定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點(diǎn),即同一個(gè)題設(shè)下有兩個(gè)結(jié)論,第一個(gè)結(jié)論是表明中位線(xiàn)與第三邊的位置關(guān)系,第二個(gè)結(jié)論是說(shuō)明中位線(xiàn)與第三邊的數(shù)量關(guān)系,在應(yīng)用時(shí)可根據(jù)需要來(lái)選用其中的結(jié)論(可以單獨(dú)用其中結(jié)論).②這個(gè)定理的證明方法很多,關(guān)鍵在于如何添加輔助線(xiàn).可以引導(dǎo)學(xué)生用不同的方法來(lái)證明以活躍學(xué)生的思維,開(kāi)闊學(xué)生思路,從而提高分析問(wèn)題和解決問(wèn)題的能力.但也應(yīng)指出,當(dāng)一個(gè)命題有多種證明方法時(shí),要選用比較簡(jiǎn)捷的方法證明.

              由學(xué)生討論,說(shuō)出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

              (l)延長(zhǎng)DE到F,使 ,連結(jié)CF,由 可得AD FC.

              (2)延長(zhǎng)DE到F,使 ,利用對(duì)角線(xiàn)互相平分的四邊形是平行四邊形,可得AD FC.

              (3)過(guò)點(diǎn)C作 ,與DE延長(zhǎng)線(xiàn)交于F,通過(guò)證 可得AD FC.

              上面通過(guò)三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

              (證明過(guò)程略)

              例 求證:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形.

              (由學(xué)生根據(jù)命題,說(shuō)出已知、求證)

              已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).

              求證:四邊形EFGH是平行四邊形.‘

              分析:因?yàn)橐阎c(diǎn)分別是四邊形各邊中點(diǎn),如果連結(jié)對(duì)角線(xiàn)就可以把四邊形分成三角形,這樣就可以用三角形中位線(xiàn)定理來(lái)證明出四邊形EFGH對(duì)邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

              證明:連結(jié)AC.

              ∴ (三角形中位線(xiàn)定理).

              同理,

              ∴GH EF

              ∴四邊形EFGH是平行四邊形.

              【小結(jié)】

              1.三角形中位線(xiàn)及三角形中位線(xiàn)與三角形中線(xiàn)的區(qū)別.

              2.三角形中位線(xiàn)定理及證明思路.

              七、布置作業(yè)

              教材P188中1(2)、4、7

            【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

            八年級(jí)的數(shù)學(xué)教案12-14

            八年級(jí)數(shù)學(xué)教案12-09

            八年級(jí)《函數(shù)》數(shù)學(xué)教案08-17

            八年級(jí)數(shù)學(xué)教案【熱門(mén)】05-29

            八年級(jí)數(shù)學(xué)教案(合集)05-29

            八年級(jí)數(shù)學(xué)教案[精品]05-29

            (合集)八年級(jí)數(shù)學(xué)教案06-21

            八年級(jí)數(shù)學(xué)教案【精品】06-22

            八年級(jí)數(shù)學(xué)教案[通用]06-21

            (熱門(mén))八年級(jí)數(shù)學(xué)教案06-21