亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

            八年級(jí)數(shù)學(xué)教案

            時(shí)間:2024-06-21 10:20:58 八年級(jí)數(shù)學(xué)教案 我要投稿

            八年級(jí)數(shù)學(xué)教案[通用]

              作為一位杰出的教職工,時(shí)常需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案要怎么寫呢?下面是小編幫大家整理的八年級(jí)數(shù)學(xué)教案,僅供參考,大家一起來看看吧。

            八年級(jí)數(shù)學(xué)教案[通用]

            八年級(jí)數(shù)學(xué)教案1

              第11章平面直角坐標(biāo)系

              11。1平面上點(diǎn)的坐標(biāo)

              第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)

              教學(xué)目標(biāo)

              【知識(shí)與技能】

              1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。

              2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。

              3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點(diǎn)的位置。

              【過程與方法】

              1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。

              2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來描述物體的位置。

              【情感、態(tài)度與價(jià)值觀】

              通過引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。

              重點(diǎn)難點(diǎn)

              【重點(diǎn)】

              認(rèn)識(shí)平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。

              【難點(diǎn)】

              理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

              教學(xué)過程

              一、創(chuàng)設(shè)情境、導(dǎo)入新知

              師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說?

              生甲:我在第3排第5個(gè)座位。

              生乙:我在第4行第7列。

              師:很好!我們買的電影票上寫著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來。

              二、合作探究,獲取新知

              師:在以上幾個(gè)問題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來表示這個(gè)物體

              的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢?

              生:3排5號(hào)。

              師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰(shuí)來說說我們應(yīng)該怎樣表示一個(gè)物體的位置呢?

              生:用一個(gè)有序的實(shí)數(shù)對(duì)來表示。

              師:對(duì)。我們學(xué)過實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來呢?

              生:可以。

              教師在黑板上作圖:

              我們可以在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

              正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。

              師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫一個(gè)平面直角坐標(biāo)系。

              學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。

              教師邊操作邊講解:

              如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。

              教師多媒體出示:

              師:如圖,請(qǐng)同學(xué)們寫出A、B、C、D這四點(diǎn)的坐標(biāo)。

              生甲:A點(diǎn)的坐標(biāo)是(—5,4)。

              生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。

              生丙:C點(diǎn)的坐標(biāo)是(4,0)。

              生。篋點(diǎn)的坐標(biāo)是(0,—6)。

              師:很好!我們已經(jīng)知道了怎樣寫出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?

              教師邊操作邊講解:

              在x軸上找出橫坐標(biāo)是3的點(diǎn),過這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。

              學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。

              三、深入探究,層層推進(jìn)

              師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開始,按逆時(shí)針方向,把這四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?

              生:都一樣。

              師:對(duì),由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎?

              生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。

              師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?

              生:能,在第二象限。

              四、練習(xí)新知

              師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。

              教師寫出四個(gè)點(diǎn)的'坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

              生甲:A點(diǎn)在第三象限。

              生乙:B點(diǎn)在第四象限。

              生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。

              生丁:D點(diǎn)不屬于任何一個(gè)象限,它在x軸上。

              師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。

              學(xué)生作圖,教師巡視,并予以指導(dǎo)。

              五、課堂小結(jié)

              師:本節(jié)課你學(xué)到了哪些新的知識(shí)?

              生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。

              教師補(bǔ)充完善。

              教學(xué)反思

              物體位置的說法和表述物體的位置等問題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

              第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)

              教學(xué)目標(biāo)

              【知識(shí)與技能】

              進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。

              【過程與方法】

              通過探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

              【情感、態(tài)度與價(jià)值觀】

              培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過二維坐標(biāo)來描述圖形頂點(diǎn),從而描述圖形的方法。

              重點(diǎn)難點(diǎn)

              【重點(diǎn)】

              理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。

              【難點(diǎn)】

              不規(guī)則圖形面積的求法。

              教學(xué)過程

              一、創(chuàng)設(shè)情境,導(dǎo)入新知

              師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。

              學(xué)生作圖。

              教師邊操作邊講解:

              二、合作探究,獲取新知

              師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來,看一下得到的是什么圖形?

              生甲:三角形。

              生乙:直角三角形。

              師:你能計(jì)算出它的面積嗎?

              生:能。

              教師挑一名學(xué)生:你是怎樣算的呢?

              生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

              師:很好!

              教師邊操作邊講解:

              大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

              圖形?

              學(xué)生完成操作后回答:平行四邊形。

              師:你能計(jì)算它的面積嗎?

              生:能。

              教師挑一名學(xué)生:你是怎么計(jì)算的呢?

              生:以BC為底,A到BC的垂線段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來看這樣一個(gè)連接成的圖形:

              教師多媒體出示下圖:

            八年級(jí)數(shù)學(xué)教案2

               一、學(xué)習(xí)目標(biāo)及重、難點(diǎn):

              1、了解方差的定義和計(jì)算公式。

              2、理解方差概念的產(chǎn)生和形成的過程。

              3、會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。

              重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。

              難點(diǎn):理解方差公式

              二、自主學(xué)習(xí):

              (一)知識(shí)我先懂:

              方差:設(shè)有n個(gè)數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

              我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用

              來表示。

              給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動(dòng)性越 。

              (二)自主檢測(cè)小練習(xí):

              1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的`方差為 。

              2、甲、乙兩組數(shù)據(jù)如下:

              甲組:10 9 11 8 12 13 10 7;

              乙組:7 8 9 10 11 12 11 12.

              分別計(jì)算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動(dòng)較小.

              三、新課講解:

              引例:?jiǎn)栴}: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測(cè)得它的苗高如下:(單位:cm)

              甲:9、10、 10、13、7、13、10、8、11、8;

              乙:8、13、12、11、10、12、7、7、10、10;

              問:(1)哪種農(nóng)作物的苗長(zhǎng)的比較高(我們可以計(jì)算它們的平均數(shù): = )

              (2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?(我們可以計(jì)算它們的極差,你發(fā)現(xiàn)了 )

              歸納: 方差:設(shè)有n個(gè)數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

              我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。

              (一)例題講解:

              例1、 段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆l(shuí)的成績(jī)比較穩(wěn)定?為什么?、

              測(cè)試次數(shù) 第1次 第2次 第3次 第4次 第5次

              段巍 13 14 13 12 13

              金志強(qiáng) 10 13 16 14 12

              給力提示:先求平均數(shù),在利用公式求解方差。

              (二)小試身手

              1、.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

              甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

              經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定

              去參加比賽。

              1、求下列數(shù)據(jù)的眾數(shù):

              (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

              2、8年級(jí)一班46個(gè)同學(xué)中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級(jí)一班學(xué)生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?

              四、課堂小結(jié)

              方差公式:

              給力提示:方差越小說明這組數(shù)據(jù)越 。波動(dòng)性越 。

              每課一首詩(shī):求方差,有公式;先平均,再求差;

              求平方,再平均;所得數(shù),是方差。

              五、課堂檢測(cè):

              1、小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)

              小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

              小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

              如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰(shuí)呢?

              六、課后作業(yè):必做題:教材141頁(yè) 練習(xí)1、2 選做題:練習(xí)冊(cè)對(duì)應(yīng)部分習(xí)題

              七、學(xué)習(xí)小札記:

              寫下你的收獲,交流你的經(jīng)驗(yàn),分享你的成果,你會(huì)感到無(wú)比的快樂!

            八年級(jí)數(shù)學(xué)教案3

              教學(xué)目標(biāo):

              1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、

              2、掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、

              3、會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、

              教學(xué)重點(diǎn):

              掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。

              難點(diǎn):

              會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)。

              情感態(tài)度與價(jià)值觀:

              通過學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐。能利用事物之間的類比性解決問題、

              教學(xué)過程:

              一、課堂引入

              1、回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):

             。1)同底數(shù)的冪的乘法:am?an = am+n(m,n是正整數(shù));

             。2)冪的乘方:(am)n = amn (m,n是正整數(shù));

              (3)積的乘方:(ab)n = anbn (n是正整數(shù));

             。4)同底數(shù)的冪的.除法:am÷an = am?n(a≠0,m,n是正整數(shù),m>n);

             。5)商的乘方:()n = (n是正整數(shù));

              2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1、

              3、你還記得1納米=10?9米,即1納米=米嗎?

              4、計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

              二、總結(jié):一般地,數(shù)學(xué)中規(guī)定:當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立、事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n(m,n是整數(shù))這條性質(zhì)也是成立的、

              三、科學(xué)記數(shù)法:

              我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0。000012 = 1。2×10?即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學(xué)生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0。0000000012 = 1。2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1。

            八年級(jí)數(shù)學(xué)教案4

              第三十四學(xué)時(shí):14.2.1平方差公式

              一、學(xué)習(xí)目標(biāo):

              1.經(jīng)歷探索平方差公式的過程。

              2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算。

              二、重點(diǎn)難點(diǎn)

              重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用;

              難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

              三、合作學(xué)習(xí)

              你能用簡(jiǎn)便方法計(jì)算下列各題嗎?

             。1)20xx×1999(2)998×1002

              導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.

             。1)(x+1)(x—1);

              (2)(m+2)(m—2)

             。3)(2x+1)(2x—1);

              (4)(x+5y)(x—5y)。

              結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的.積,等于這兩個(gè)數(shù)的平方差。

              即:(a+b)(a—b)=a2—b2

              四、精講精練

              例1:運(yùn)用平方差公式計(jì)算:

             。1)(3x+2)(3x—2);

              (2)(b+2a)(2a—b);

             。3)(—x+2y)(—x—2y)。

              例2:計(jì)算:

             。1)102×98;

             。2)(y+2)(y—2)—(y—1)(y+5)。

              隨堂練習(xí)

              計(jì)算:

             。1)(a+b)(—b+a);

             。2)(—a—b)(a—b);

             。3)(3a+2b)(3a—2b);

              (4)(a5—b2)(a5+b2);

              (5)(a+2b+2c)(a+2b—2c);

             。6)(a—b)(a+b)(a2+b2)。

              五、小結(jié)

             。╝+b)(a—b)=a2—b2

            八年級(jí)數(shù)學(xué)教案5

              一、教學(xué)目標(biāo)

              1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;

              2.使學(xué)生能夠求出分式有意義的條件;

              3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;

              4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識(shí).

              二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

              1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.

              2.疑點(diǎn)及解決辦法 通過類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式意義的理解.

              三、教學(xué)過程

              【新課引入】

              前面所研究的因式分解問題是把整式分解成若干個(gè)因式的積的問題,但若有如下問題:某同學(xué)分鐘做了60個(gè)仰臥起坐,每分鐘做多少個(gè)?可表示為,問,這是不是整式?請(qǐng)一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)

              【新課】

              1.分式的定義

              (1)由學(xué)生分組討論分式的定義,對(duì)于“兩個(gè)整式相除叫做分式”等錯(cuò)誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

              用、表示兩個(gè)整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的'分子,叫做分式的分母.

              (2)由學(xué)生舉幾個(gè)分式的例子.

              (3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.

              ①分母中含有字母.

             、谌缤?jǐn)?shù)一樣,分式的分母不能為零.

              (4)問:何時(shí)分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]

              2.有理式的分類

              請(qǐng)學(xué)生類比有理數(shù)的分類為有理式分類:

              例1 當(dāng)取何值時(shí),下列分式有意義?

              (1);

              解:由分母得.

              ∴當(dāng)時(shí),原分式有意義.

              (2);

              解:由分母得.

              ∴當(dāng)時(shí),原分式有意義.

              (3);

              解:∵恒成立,

              ∴取一切實(shí)數(shù)時(shí),原分式都有意義.

              (4).

              解:由分母得.

              ∴當(dāng)且時(shí),原分式有意義.

              思考:若把題目要求改為:“當(dāng)取何值時(shí)下列分式無(wú)意義?”該怎樣做?

              例2 當(dāng)取何值時(shí),下列分式的值為零?

              (1);

              解:由分子得.

              而當(dāng)時(shí),分母.

              ∴當(dāng)時(shí),原分式值為零.

              小結(jié):若使分式的值為零,需滿足兩個(gè)條件:①分子值等于零;②分母值不等于零.

              (2);

              解:由分子得.

              而當(dāng)時(shí),分母,分式無(wú)意義.

              當(dāng)時(shí),分母.

              ∴當(dāng)時(shí),原分式值為零.

              (3);

              解:由分子得.

              而當(dāng)時(shí),分母.

              當(dāng)時(shí),分母.

              ∴當(dāng)或時(shí),原分式值都為零.

              (4).

              解:由分子得.

              而當(dāng)時(shí),,分式無(wú)意義.

              ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

              (四)總結(jié)、擴(kuò)展

              1.分式與分?jǐn)?shù)的區(qū)別.

              2.分式何時(shí)有意義?

              3.分式何時(shí)值為零?

              (五)隨堂練習(xí)

              1.填空題:

              (1)當(dāng)時(shí),分式的值為零

              (2)當(dāng)時(shí),分式的值為零

              (3)當(dāng)時(shí),分式的值為零

              2.教材P55中1、2、3.

              八、布置作業(yè)

              教材P56中A組3、4;B組(1)、(2)、(3).

              九、板書設(shè)計(jì)

              課題 例1

              1.定義例2

              2.有理式分類

            八年級(jí)數(shù)學(xué)教案6

              一、素質(zhì)教育目標(biāo)

              (一)知識(shí)教學(xué)點(diǎn)

              1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.

              2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.

              3.會(huì)根據(jù)簡(jiǎn)單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個(gè)定理.

              (二)能力訓(xùn)練點(diǎn)

              1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.

              2.通過教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的'能力.

              (三)德育滲透點(diǎn)

              通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.

              (四)美育滲透點(diǎn)

              通過學(xué)習(xí),體會(huì)幾何證明的方法美.

              二、學(xué)法引導(dǎo)

              構(gòu)造逆命題,分析探索證明,啟發(fā)講解.

              三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

              1.教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用.

              2.教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理.

              3.疑點(diǎn)及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時(shí),在什么條件下用判定定理,在什么條件下用性質(zhì)定理

              (強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理).

            八年級(jí)數(shù)學(xué)教案7

              一、教學(xué)目的

              1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.

              2.使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象.

              二、教學(xué)重點(diǎn)、難點(diǎn)

              重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.

              2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.

              難點(diǎn):在畫圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問題.

              三、教學(xué)過程

              復(fù)習(xí)提問

              1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

              2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

              3.說出下列各點(diǎn)所在象限或坐標(biāo)軸:

              新課

              1.畫函數(shù)圖象的方法是描點(diǎn)法.其步驟:

              (1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.

              一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來.

              (2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).

              (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.

              一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).

              2.講解畫函數(shù)圖象的三個(gè)步驟和例.畫出函數(shù)y=x+0.5的圖象.

              小結(jié)

              本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的'三個(gè)步驟,自己動(dòng)手畫圖.

              練習(xí)

              ①選用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)

             、谘a(bǔ)充題:畫出函數(shù)y=5x-2的圖象.

              作業(yè)

              選用課本習(xí)題.

              四、教學(xué)注意問題

              1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.

              2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性.

              3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.

            八年級(jí)數(shù)學(xué)教案8

              一、教學(xué)目標(biāo)

             、俳(jīng)歷探索整式除法運(yùn)算法則的過程,會(huì)進(jìn)行簡(jiǎn)單的整式除法運(yùn)算(只要求單項(xiàng)式除以單項(xiàng)式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨(dú)立思考、集體協(xié)作的能力。

             、诶斫庹匠ǖ乃憷恚l(fā)展有條理的思考及表達(dá)能力。

              二、教學(xué)重點(diǎn)與難點(diǎn)

              重點(diǎn):整式除法的運(yùn)算法則及其運(yùn)用。

              難點(diǎn):整式除法的運(yùn)算法則的推導(dǎo)和理解,尤其是單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。

              三、教學(xué)準(zhǔn)備

              卡片及多媒體課件。

              四、教學(xué)設(shè)計(jì)

              (一)情境引入

              教科書第161頁(yè)問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?

              重點(diǎn)研究算式(1。90×1024)÷(5。98×1021)怎樣進(jìn)行計(jì)算,目的是給出下面兩個(gè)單項(xiàng)式相除的模型。

              注:教科書從實(shí)際問題引入單項(xiàng)式的除法運(yùn)算,學(xué)生在探索這個(gè)問題的.過程中,將自然地體會(huì)到學(xué)習(xí)單項(xiàng)式的除法運(yùn)算的必要性,了解數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,同時(shí)再次經(jīng)歷感受較大數(shù)據(jù)的過程。

             。ǘ┨骄啃轮

             。1)計(jì)算(1。90×1024)÷(5。98×1021),說說你計(jì)算的根據(jù)是什么?

              (2)你能利用(1)中的方法計(jì)算下列各式嗎?

              8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

             。3)你能根據(jù)(2)說說單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?

              注:教師可以鼓勵(lì)學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運(yùn)用自己的語(yǔ)言進(jìn)行描述。

              單項(xiàng)式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進(jìn)行。探究活動(dòng)的安排,是使學(xué)生通過對(duì)具體的特例的計(jì)算,歸納出單項(xiàng)式的除法運(yùn)算性質(zhì),并能運(yùn)用乘除互逆的關(guān)系加以說明,也可類比分?jǐn)?shù)的約分進(jìn)行。在這些活動(dòng)過程中,學(xué)生的化歸、符號(hào)演算等代數(shù)推理能力和有條理的表達(dá)能力得到進(jìn)一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強(qiáng)調(diào)的。

              (三)歸納法則

              單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。

              注:通過總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語(yǔ)言表達(dá)自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

              (四)應(yīng)用新知

              例2計(jì)算:

             。1)28x4y2÷7x3y;

             。2)—5a5b3c÷15a4b。

              首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號(hào)。對(duì)本例可以采用學(xué)生口述,教師板書的形式完成?谑龊桶鍟紤(yīng)注意展示法則的應(yīng)用,計(jì)算過程要詳盡,使學(xué)生盡快熟悉法則。

              注:?jiǎn)雾?xiàng)式除以單項(xiàng)式,既要對(duì)系數(shù)進(jìn)行運(yùn)算,又要對(duì)相同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對(duì)只在一個(gè)單項(xiàng)式里含有的冪要加以注意,這些對(duì)剛剛接觸整式除法的學(xué)生來講,難免會(huì)出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問題。

              鞏固新知教科書第162頁(yè)練習(xí)1及練習(xí)2。

              學(xué)生自己嘗試完成計(jì)算題,同桌交流。

              注:在獨(dú)立解題和同伴的相互交流過程中讓學(xué)生自己去體會(huì)法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動(dòng)參與學(xué)習(xí)的習(xí)慣。

             。ㄎ澹┳鳂I(yè)

              1、必做題:教科書第164頁(yè)習(xí)題15。3第1題;第2題。

              2、選做題:教科書第164頁(yè)習(xí)題15。3第8題

            八年級(jí)數(shù)學(xué)教案9

              教學(xué)目標(biāo)

              1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法.

              2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題

              教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用

              教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用

              一.引

              小明的父親手中有一些木條,他想通過適當(dāng)?shù)?測(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?

              二.探

              閱讀教材P44至P45

              利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

              (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

              (2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

              (3)你能說出你的做法及其道理嗎?

              (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來嗎?

              (5)你還能找出其他方法嗎?

              從探究中得到:

              平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

              平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。

              證一證

              平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

              證明:(畫出圖形)

              平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。

            八年級(jí)數(shù)學(xué)教案10

              分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。

              解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。

             。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。

              (3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。

             。4),即,故x—2≥0且x—2≠0,∴x>

              2。當(dāng)x

              >2時(shí),是二次根式。

              例4下列各式是二次根式,求式子中的字母所滿足的條件:

              分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

              解:(1)由2a+3≥0,得。

             。2)由,得3a—1>0,解得。

              (3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的`取值范圍是全體實(shí)數(shù)。

             。4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。

            八年級(jí)數(shù)學(xué)教案11

              教學(xué)目標(biāo)

              理解平行四邊形的定義,能根據(jù)定義探究平行四邊形的性質(zhì).

              教學(xué)思考

              1.通過觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動(dòng),發(fā)展學(xué)生合情推理能力和動(dòng)手操作能力及應(yīng)用數(shù)學(xué)的意識(shí)與能力.

              2.能夠根據(jù)平行四邊形的性質(zhì)進(jìn)行簡(jiǎn)單的推理和計(jì)算.

              解決問題

              通過平行四邊形性質(zhì)的探索過程,豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)與體驗(yàn),能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的推理和計(jì)算,發(fā)展應(yīng)用意識(shí).

              情感態(tài)度

              在應(yīng)用平行四邊形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣,在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).

              重點(diǎn)

              平行四邊形的性質(zhì)的'探究和平行四邊形的性質(zhì)的應(yīng)用.

              難點(diǎn)

              平行四邊形的性質(zhì)的應(yīng)用.

              教學(xué)流程安排

              活動(dòng)流程圖

              活動(dòng)內(nèi)容和目的

              活動(dòng)1欣賞圖片,了解生活中的特殊四邊形

              活動(dòng)2剪三角形紙片,拼凸四邊形

              活動(dòng)3理解平行四邊形的概念

              活動(dòng)4探究平行四邊形邊、角的性質(zhì)

              活動(dòng)5平行四邊形性質(zhì)的應(yīng)用

              活動(dòng)6評(píng)價(jià)反思、布置作業(yè)

              熟悉生活中特殊的四邊形,導(dǎo)出課題.

              通過用三角形拼四邊形的過程,滲透轉(zhuǎn)化思想,激發(fā)探索精神.

              掌握平行四邊形的定義及表示方法.

              探究平行四邊形的性質(zhì).

              運(yùn)用平行四邊形的性質(zhì).

              學(xué)生交流,內(nèi)化知識(shí),課后鞏固知識(shí).

              教學(xué)過程設(shè)計(jì)

              問題與情景

              師生行為

              設(shè)計(jì)意圖

            [活動(dòng)1]

              下面的圖片中,有你熟悉的哪些圖形?

             。ǔ鍪緢D片)

              演示圖片,學(xué)生欣賞.

              教師介紹四邊形與我們生活密切聯(lián)系,學(xué)生可再補(bǔ)充列舉.

              從實(shí)例圖片中,抽象出的特殊四邊形,培養(yǎng)學(xué)生的抽象思維.通過舉例,讓學(xué)生感受到數(shù)學(xué)與我們的生活緊密聯(lián)系.

              問題與情景

              師生行為

              設(shè)計(jì)意圖

              [活動(dòng)2]

              拼一拼

              將一張紙對(duì)折,剪下兩張疊放的三角形紙片.將這兩個(gè)三角形相等的一組邊重合,你會(huì)得到怎樣的圖形.

              (1)你拼出了怎樣的凸四邊形?與同伴交流.

             。2)一位同學(xué)拼出了如下圖所示的一個(gè)四邊形,這個(gè)四邊形的對(duì)邊有怎樣的位置關(guān)系?說說你的理由.

              學(xué)生經(jīng)過實(shí)驗(yàn)操作,開展獨(dú)立思考與合作學(xué)習(xí).

              教師深入學(xué)生之中,觀察學(xué)生頻出的方法與過程,接受學(xué)生質(zhì)疑并指導(dǎo)個(gè)別學(xué)生探究.

              教師待學(xué)生充分探究后,請(qǐng)學(xué)生展示拼圖的方法和不同的圖形.并引導(dǎo)學(xué)生分析(2)中的四邊形的邊的位置特征,從而引出本節(jié)課研究的內(nèi)容

            八年級(jí)數(shù)學(xué)教案12

              學(xué)習(xí)目標(biāo):

              1. 在同一直角坐標(biāo)系中,感受點(diǎn)的坐標(biāo)變化與圖形的變化之間的關(guān)系,并能找出變化規(guī)律。

              2. 通過坐標(biāo)的變化探索新舊圖形之間的變化。

              重點(diǎn):

              1. 對(duì)稱軸的對(duì)稱圖形,并且能寫出所得圖形各點(diǎn)的坐標(biāo)。

              2. 根據(jù)軸對(duì)稱圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

              難點(diǎn):

              1. 理解并應(yīng)用直角坐標(biāo)與極坐標(biāo)。

              2. 解決一些簡(jiǎn)單的問題。

              學(xué)習(xí)過程:

              第一課時(shí)

              一、舊知回顧:

              1. 平面直角坐標(biāo)系定義:在平面內(nèi),兩條垂直且有公共端點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。

              2. 坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法是(x,y)。

              3. 各象限點(diǎn)的坐標(biāo)的特征:

              第一象限:x和y坐標(biāo)都是正數(shù)。第二象限:x坐標(biāo)為負(fù)數(shù),y坐標(biāo)為正數(shù)。第三象限:x和y坐標(biāo)都是負(fù)數(shù)。第四象限:x坐標(biāo)為正數(shù),y坐標(biāo)為負(fù)數(shù)。

              二、新知檢索:

              1. 在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形。

              三、典例分析:

              例1、

              (1) 將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

              (2)將魚的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

              例2、

              (1)將魚的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

              (2) 將魚的頂點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變成原來的一半,并繪制圖形。分析得到的圖形和原圖形之間有什么不同?

              四、習(xí)題組訓(xùn)練

              1、在平面直角坐標(biāo)系中,將點(diǎn)(0,0)、(2,4)、(2,0)和(4,4)連接形成一個(gè)圖案。

              (1)將這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的一半,然后依次連接得到新圖形。得到的圖形和原圖形之間有什么變化?

              (2)將縱坐標(biāo)和橫坐標(biāo)都增加3,所得到的圖形會(huì)發(fā)生怎樣的變化?

              (3)將縱坐標(biāo)和橫坐標(biāo)都乘以2,所得到的圖形會(huì)發(fā)生怎樣的變化?

              歸納得出:圖形坐標(biāo)變化的規(guī)律

              1、平移規(guī)律

              2、圖形伸縮規(guī)律

              第二課時(shí)

              一、已學(xué)內(nèi)容回顧:

              1、軸對(duì)稱圖形的定義:如果一個(gè)圖形能夠沿著某條軸翻折成重合的兩部分,那么這個(gè)圖形就是軸對(duì)稱圖形。

              2、中心對(duì)稱圖形的定義:如果一個(gè)圖形繞著某個(gè)點(diǎn)旋轉(zhuǎn)一定的度數(shù)后與原圖形完全重合,那么這個(gè)圖形就是中心對(duì)稱圖形。

              二、新學(xué)內(nèi)容引入:

              1、如下圖所示,左邊的魚和右邊的魚是關(guān)于y軸對(duì)稱的。

              (1) 左邊的魚可以通過平移、壓縮或拉伸來得到右邊的魚嗎?

              (2) 左邊魚和右邊魚的頂點(diǎn)坐標(biāo)之間有怎樣的關(guān)系?

              (3) 如果將右邊的魚沿著x軸正方向平移1個(gè)單位長(zhǎng)度,然后通過不改變關(guān)于y軸對(duì)稱的條件,那么左邊的魚的.頂點(diǎn)坐標(biāo)會(huì)發(fā)生怎樣的變化?

              三、典型例題解析:

              1、如下圖所示,右邊的魚是通過何種變換得到左邊的魚的?

              2、如果將右邊魚的橫坐標(biāo)保持不變,縱坐標(biāo)變成原來的一倍,繪制得到的圖形與原圖形之間有何不同?

              3、如果將右邊魚的縱坐標(biāo)和橫坐標(biāo)都變成原來的一倍,所得到的圖形和原圖形之間有何不同?

              四、習(xí)題組練習(xí):

              1、當(dāng)坐標(biāo)發(fā)生如下變化時(shí),圖形會(huì)做出怎樣的變化?

              1、已知點(diǎn)位移的矩陣:

              ① (x,y) → (x,y + 4)

              ② (x,y) → (x,y - 2)

             、 (x,y) → (1/2x,y)

             、 (x,y) → (3x,y)

             、 (x,y) → (x,1/2y)

             、 (x,y) → (3x,3y)

              2、在第一象限內(nèi)有一只蝴蝶,現(xiàn)在在第二象限內(nèi)畫出一個(gè)與它形狀大小完全一樣的蝴蝶,并標(biāo)出它們的各個(gè)頂點(diǎn)坐標(biāo)。

              3、以圖中的字母M為輪廓,在y軸上作出與它關(guān)于軸對(duì)稱圖形,并標(biāo)出相應(yīng)端點(diǎn)的坐標(biāo)。

              4、簡(jiǎn)要描繪圖示中楓葉圖案關(guān)于x軸對(duì)稱的軸對(duì)稱圖形。

              學(xué)習(xí)筆記:

            八年級(jí)數(shù)學(xué)教案13

              【教學(xué)目標(biāo)】:

              1、幫助學(xué)生總結(jié)一般三角形全等的判定條件,使他們自覺運(yùn)用各種全等判定法進(jìn)行說理;

              2、通過一般三角形全等判定條件的歸納,幫助學(xué)生認(rèn)識(shí)事物間存在著的因果關(guān)系和制約的關(guān)系。

              【重點(diǎn)難點(diǎn)】:

              1、重點(diǎn):讓學(xué)生識(shí)別三角的哪些元素能用來確定三角形的形狀與大小,因而可用來判定三角形全等。

              2、難點(diǎn):靈活應(yīng)用各種判定法識(shí)別全等三角形。

              【教學(xué)準(zhǔn)備】:

              卡紙剪出的圖1、2中的六個(gè)三角形。

             。▓D1)(圖2)

              【教學(xué)過程】:

              一、復(fù)習(xí)

              1、判定兩個(gè)三角形全等的條件有哪些?

              (有SAS、ASA、AAS、SSS。HL)

              2、一個(gè)三角形共有三條邊與三個(gè)角,你是否想到這樣一問題了:除了上述四種判定法,還有其他的三角形全等判定法嗎?比如說“SSA”、“AAA”能成為判定兩個(gè)三角形全等的條件嗎?

              二、新授

              1、演示

             。1)演示圖1中的I、II三角形,它們間有兩邊及一對(duì)角對(duì)應(yīng)相等,這兩個(gè)三角形能完全重合,是全等形。但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合不是全等形,因此我們進(jìn)一點(diǎn)證實(shí)了:有兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等。“SSA”不是判定三角形全等的方法。

             。2)演示圖2中的I、II三角形,它們間有三個(gè)角對(duì)應(yīng)相等,這兩個(gè)三角形能完全重合,是全等形,但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合,不是全等形。因此我們進(jìn)一步證實(shí)了:三個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等“AAA”也不是判定三角形全等的方法。

              2、填下表(掛出小黑板,讓學(xué)生思考、討論,共同填答)。

              兩個(gè)三角形中對(duì)應(yīng)相等的元素兩個(gè)三角形是否全等依據(jù)的判定法反例

              SSS√SSS

              SAS√SAS

              SSAX可舉反例

              ASA√ASA

              AAS√AAS

              AAAX可舉反例

              3、范例

              例:如圖,,,點(diǎn)F是CD的.中點(diǎn),嗎?試說明理由。

              教學(xué)要點(diǎn):

             。1)分析題目結(jié)論假定,可轉(zhuǎn)化為,需證它們所在的兩個(gè)三角形全等;

             。2)觀察圖形,、中,并不在三角形中,為此添輔助線AC、AD;

             。3)在△ACF與△ADF中,已知AF是公共邊,CF= FD,尚缺一條件,它只能是AC與AD相等;

             。4)為證AC與AD相等。又要找它們分別在的△ACB與△ADE;

              (5)△ACB與△ADE,由已知條件可由SAS證它們?nèi)龋?/p>

              (6)書寫范例。

              解:連結(jié)AC、AD,由已知AB=AE,,BC=DE

              由SAS三角形全等判定法可知:

              △ABC≌△AED

              根據(jù)全等三角形的對(duì)應(yīng)相等可知

              由,,(公共邊),根據(jù)SSS可知△ACF≌△ADF

              根據(jù)全等三角形的對(duì)應(yīng)角相等可知

              又由于F在直線CD上,可得,即。

              你們可有其他方法嗎?

             三、鞏固練習(xí)

              1、如圖,在△ABC中,,,試說明△AED是等腰三角形。

              2、如圖,AB∥CD,AD∥BC,與,與相等嗎?說明理由。

              四、小結(jié)由學(xué)生對(duì)本節(jié)的學(xué)習(xí)過程進(jìn)行總結(jié)。

              五、作業(yè)

             。ㄒ唬、填空題:

              1、有一邊對(duì)應(yīng)相等的兩個(gè)三角形全等;

              2、有一邊和對(duì)應(yīng)相等的兩個(gè)三角形全等;3、有兩邊和一角對(duì)應(yīng)相等的兩個(gè)三角形全等;

              4、如圖,AB∥CD,AD∥BC,AC、BD相交于點(diǎn)O。

             。1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;

             。2)由,可得AD=CB,由,可得△AOD≌△COB;

             。3)圖中全等三角形共有對(duì)。

             。ǘ、選擇題:

              1、若△ABC≌△BAD,A和B、C和D是對(duì)應(yīng)頂點(diǎn),如果,,,則BC的長(zhǎng)是()

              A、 B、 C、 D、無(wú)法確定

              2、下列各說法中,正確的是()

              A、有兩邊和一角對(duì)應(yīng)相等的兩個(gè)三角形全等;

              B、有兩個(gè)角對(duì)應(yīng)相等且周長(zhǎng)相等的兩個(gè)三角形全等;

              C、兩個(gè)銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;

              D、有兩組邊相等且周長(zhǎng)相等的兩個(gè)三角形全等。

              (三)、解答題:

              1 、如圖,,,AC、BD交于點(diǎn),圖中共有幾對(duì)長(zhǎng)度相等的線段,你是通過什么辦法找到的?

              2、如圖,,,(1)等于多少度?

             。2)圖中有哪幾組平行線?

              (3)與的和是定值嗎?

            八年級(jí)數(shù)學(xué)教案14

              一、教學(xué)目標(biāo)

              1、理解分式的基本性質(zhì)。

              2、會(huì)用分式的基本性質(zhì)將分式變形。

              二、重點(diǎn)、難點(diǎn)

              1、重點(diǎn):理解分式的基本性質(zhì)。

              2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

              3、認(rèn)知難點(diǎn)與突破方法

              教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

              三、練習(xí)題的意圖分析

              1、P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

              2、P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

              教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

              3。P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號(hào)。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

              “不改變分式的值,使分式的分子和分母都不含‘—’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

              四、課堂引入

              1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

              2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

              3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的'基本性質(zhì)。

              五、例題講解

              P7例2。填空:

              [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。

              P11例3。約分:

              [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。

              P11例4。通分:

              [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

            八年級(jí)數(shù)學(xué)教案15

              一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡(jiǎn)化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。

              根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國(guó)數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。

              通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。

              通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的.創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。

              (二)重點(diǎn)、難點(diǎn)

              一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語(yǔ)言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。

              (三)教學(xué)目標(biāo)

              1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。

            【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

            八年級(jí)的數(shù)學(xué)教案12-14

            八年級(jí)《函數(shù)》數(shù)學(xué)教案08-17

            八年級(jí)數(shù)學(xué)教案12-09

            人教版八年級(jí)數(shù)學(xué)教案11-04

            八年級(jí)數(shù)學(xué)教案【精】12-04

            八年級(jí)數(shù)學(xué)教案【推薦】12-04

            八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

            八年級(jí)的數(shù)學(xué)教案15篇12-14

            八年級(jí)上冊(cè)數(shù)學(xué)教案12-11

            八年級(jí)數(shù)學(xué)教案[精品]05-29