八年級數(shù)學(xué)教案15篇
在教學(xué)工作者實(shí)際的教學(xué)活動中,往往需要進(jìn)行教案編寫工作,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的八年級數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
八年級數(shù)學(xué)教案1
教學(xué)目標(biāo):
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。
教學(xué)重點(diǎn):分式通分的理解和掌握。
教學(xué)難點(diǎn):分式通分中最簡公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過程:
(一)引入
(1)如何計算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的`通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據(jù)分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼剑垢鞣质降姆帜付蓟癁橥ǚ秩缦拢簒xx
通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。
例1 通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy2,
小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a2b2c2,
由學(xué)生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。
八年級數(shù)學(xué)教案2
分式方程
教學(xué)目標(biāo)
1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.
教學(xué)重點(diǎn):
將實(shí)際問題中的等量 關(guān)系用分式方程表示
教學(xué)難點(diǎn):
找實(shí)際問題中的等量關(guān)系
教學(xué)過程:
情境導(dǎo)入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗田 每公頃的.產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學(xué)生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點(diǎn)?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
五、 隨堂練習(xí)
(1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
六、學(xué) 習(xí)小結(jié)
本節(jié)課你學(xué)到了哪些知識?有什么感想?
七.作業(yè)布置
八年級數(shù)學(xué)教案3
【教學(xué)目標(biāo)】:
1、幫助學(xué)生總結(jié)一般三角形全等的判定條件,使他們自覺運(yùn)用各種全等判定法進(jìn)行說理;
2、通過一般三角形全等判定條件的歸納,幫助學(xué)生認(rèn)識事物間存在著的因果關(guān)系和制約的關(guān)系。
【重點(diǎn)難點(diǎn)】:
1、重點(diǎn):讓學(xué)生識別三角的哪些元素能用來確定三角形的形狀與大小,因而可用來判定三角形全等。
2、難點(diǎn):靈活應(yīng)用各種判定法識別全等三角形。
【教學(xué)準(zhǔn)備】:
卡紙剪出的圖1、2中的六個三角形。
(圖1)(圖2)
【教學(xué)過程】:
一、復(fù)習(xí)
1、判定兩個三角形全等的條件有哪些?
。ㄓ蠸AS、ASA、AAS、SSS。HL)
2、一個三角形共有三條邊與三個角,你是否想到這樣一問題了:除了上述四種判定法,還有其他的三角形全等判定法嗎?比如說“SSA”、“AAA”能成為判定兩個三角形全等的'條件嗎?
二、新授
1、演示
(1)演示圖1中的I、II三角形,它們間有兩邊及一對角對應(yīng)相等,這兩個三角形能完全重合,是全等形。但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合不是全等形,因此我們進(jìn)一點(diǎn)證實(shí)了:有兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不一定全等!癝SA”不是判定三角形全等的方法。
。2)演示圖2中的I、II三角形,它們間有三個角對應(yīng)相等,這兩個三角形能完全重合,是全等形,但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合,不是全等形。因此我們進(jìn)一步證實(shí)了:三個角對應(yīng)相等的兩個三角形不一定全等“AAA”也不是判定三角形全等的方法。
2、填下表(掛出小黑板,讓學(xué)生思考、討論,共同填答)。
兩個三角形中對應(yīng)相等的元素兩個三角形是否全等依據(jù)的判定法反例
SSS√SSS
SAS√SAS
SSAX可舉反例
ASA√ASA
AAS√AAS
AAAX可舉反例
3、范例
例:如圖,,,點(diǎn)F是CD的中點(diǎn),嗎?試說明理由。
教學(xué)要點(diǎn):
(1)分析題目結(jié)論假定,可轉(zhuǎn)化為,需證它們所在的兩個三角形全等;
(2)觀察圖形,、中,并不在三角形中,為此添輔助線AC、AD;
。3)在△ACF與△ADF中,已知AF是公共邊,CF= FD,尚缺一條件,它只能是AC與AD相等;
。4)為證AC與AD相等。又要找它們分別在的△ACB與△ADE;
(5)△ACB與△ADE,由已知條件可由SAS證它們?nèi)龋?/p>
。6)書寫范例。
解:連結(jié)AC、AD,由已知AB=AE,,BC=DE
由SAS三角形全等判定法可知:
△ABC≌△AED
根據(jù)全等三角形的對應(yīng)相等可知
由,,(公共邊),根據(jù)SSS可知△ACF≌△ADF
根據(jù)全等三角形的對應(yīng)角相等可知
又由于F在直線CD上,可得,即。
你們可有其他方法嗎?
三、鞏固練習(xí)
1、如圖,在△ABC中,,,試說明△AED是等腰三角形。
2、如圖,AB∥CD,AD∥BC,與,與相等嗎?說明理由。
四、小結(jié)由學(xué)生對本節(jié)的學(xué)習(xí)過程進(jìn)行總結(jié)。
五、作業(yè)
。ㄒ唬、填空題:
1、有一邊對應(yīng)相等的兩個三角形全等;
2、有一邊和對應(yīng)相等的兩個三角形全等;3、有兩邊和一角對應(yīng)相等的兩個三角形全等;
4、如圖,AB∥CD,AD∥BC,AC、BD相交于點(diǎn)O。
。1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;
(2)由,可得AD=CB,由,可得△AOD≌△COB;
。3)圖中全等三角形共有對。
。ǘ⑦x擇題:
1、若△ABC≌△BAD,A和B、C和D是對應(yīng)頂點(diǎn),如果,,,則BC的長是()
A、 B、 C、 D、無法確定
2、下列各說法中,正確的是()
A、有兩邊和一角對應(yīng)相等的兩個三角形全等;
B、有兩個角對應(yīng)相等且周長相等的兩個三角形全等;
C、兩個銳角對應(yīng)相等的兩個直角三角形全等;
D、有兩組邊相等且周長相等的兩個三角形全等。
。ㄈ、解答題:
1 、如圖,,,AC、BD交于點(diǎn),圖中共有幾對長度相等的線段,你是通過什么辦法找到的?
2、如圖,,,(1)等于多少度?
(2)圖中有哪幾組平行線?
(3)與的和是定值嗎?
八年級數(shù)學(xué)教案4
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>
2。當(dāng)x
>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的.被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何實(shí)數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
八年級數(shù)學(xué)教案5
教學(xué)目標(biāo):
1、了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2、了解開方與乘方互為逆運(yùn)算,會用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
教學(xué)重點(diǎn):
算術(shù)平方根的概念。
教學(xué)難點(diǎn):
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
教學(xué)過程
一、情境導(dǎo)入
請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少?如果這塊畫布的面積是?這個問題實(shí)際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容。這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念。
二、導(dǎo)入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)
這個問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值。
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根。a的.算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù)。規(guī)定:0的算術(shù)平方根是0。
也就是,在等式=a(x0)中,規(guī)定x = 。
2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來。
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值。例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
。1)100;(2)1;(3);(4)0。0001
三、練習(xí)
P69練習(xí)1、2
四、探究:(課本第69頁)
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學(xué)生探究。
問題:這個大正方形的邊長應(yīng)該是多少呢?
大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究。
五、小結(jié):
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術(shù)平方根
六、課外作業(yè):
P75習(xí)題13.1活動第1、2、3題
八年級數(shù)學(xué)教案6
教學(xué)目標(biāo):
1、知識目標(biāo):探索圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合)。
2、能力目標(biāo):
、俳(jīng)歷對具有旋轉(zhuǎn)特征的圖形進(jìn)行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。
、谀軌虬匆笞鞒龊唵纹矫鎴D形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達(dá)到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。
3、情感體驗點(diǎn):培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點(diǎn)與難點(diǎn):
重點(diǎn):圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合);
難點(diǎn):綜合利用各種變換關(guān)系觀察圖形的形成。
疑點(diǎn):基本圖案不同,形成方式不同。
教學(xué)方法:
新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開教學(xué)。
教學(xué)過程設(shè)計:
1、情境導(dǎo)入
播放自制圖形形成的影片,如圖351。
2、充分利用本課時引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經(jīng)過適當(dāng)?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過平移嗎?能經(jīng)過軸對稱嗎?還有其它方式嗎?
問題本身為學(xué)生創(chuàng)設(shè)了一個探究圖形之間變化關(guān)系的情景,圖形雖十簡單,但變換方式綜合性強(qiáng),可以讓學(xué)生自由發(fā)揮,各抒已見,后由教師進(jìn)行適當(dāng)歸納小結(jié):
(1)整個圖形可以看做是由一個十字組成部分通過連續(xù)七次平移前后的圖形共同組成;
(2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;
(3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;
(4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。
(學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)
3、通過上述問題的討論,我們看到圖形的平移、旋轉(zhuǎn),軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計圖案的.主要手段。
4、利用想一想你能將圖352的左圖,通過平移或旋轉(zhuǎn)得到右圖嗎?
學(xué)生議論或動手操作會發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時,要充分利用它們各自的性質(zhì)、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進(jìn)一步讓學(xué)生思考,從而得到結(jié)論是可能的。
5、例1、怎樣將圖353中的甲圖變成乙圖案?
通過相對簡單活潑的問題,讓學(xué)生能運(yùn)用圖形變換的幾種不同方式解答問題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)
例2、怎樣將圖354中右邊的圖案變成左邊的圖案?
留給學(xué)生充足的時間討論交流。
(師):哪位同學(xué)有好好方法,請告訴大家!
(生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時針方向旋轉(zhuǎn)900 。
(生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時針方向旋轉(zhuǎn)2700 。
明確可以通過不同的辦法達(dá)到同樣的效果,激勵學(xué)生動手動腦。
5、學(xué)習(xí)小結(jié)
(1)內(nèi)容總結(jié)
兩個圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對稱)
(2)方法歸納
、倭私獠⒅缊D案變化的一般方法。
、趫D案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問題的習(xí)慣。
6、目標(biāo)檢測
圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經(jīng)過怎樣的變換而得到?
延伸拓展:
1、鏈接生活
鏈接一:奧運(yùn)會的五環(huán)旗圖案是大家熟悉的圖案,請你根據(jù)所學(xué)知識分析它的形成。(用課本知識解釋生活中的圖形變換)
鏈接二:夏季是荷花盛開的季節(jié),同學(xué)們都贊美過它出淤泥而不染的品質(zhì),很多同學(xué)曾畫過荷花,請你用所學(xué)知識再畫一朵荷花,看與以前有什么不同的感受(讓學(xué)生進(jìn)一步體會數(shù)學(xué)與生活的密切聯(lián)系)
實(shí)踐探索:
、賹(shí)踐活動列舉實(shí)例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對稱及其組合)
、陟柟叹毩(xí)課本74頁中的習(xí)題3.6。
板書設(shè)計:
3.5它們是怎樣變過來的。
軸對稱、平移、旋轉(zhuǎn)的性質(zhì)例題;
圖形之間的變換關(guān)系;
八年級數(shù)學(xué)教案7
●教學(xué)目標(biāo)
(一)教學(xué)知識點(diǎn)
1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似.
2.能根據(jù)相似比進(jìn)行計 算.
(二)能力訓(xùn)練要求
1.能根據(jù)定義判斷兩個三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.
2.能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運(yùn)用能力.
(三)情感與價值觀要求
通過與相似多邊形有關(guān)概念的類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系.
●教學(xué)重點(diǎn) 相似三角形的定義及運(yùn)用.
●教學(xué)難點(diǎn) 根據(jù)定義求線段長或角的度數(shù).
●教學(xué)過程
、.創(chuàng)設(shè)問題情境,引入新課
今天, 我們就來研究相似三角形.
、.新課講解
1.相似三角形的定義及記法
三角對應(yīng)相等,三邊 對應(yīng)成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF
其中對應(yīng)頂點(diǎn)要寫在對應(yīng)位置,如A與D,B與E,C與F相對應(yīng).AB∶DE等于相似比.
2.想一想
如果△ABC∽△DEF,那么哪些角是對應(yīng)角?哪些邊是對應(yīng)邊?對應(yīng) 角 有什么關(guān)系?對應(yīng)邊呢?
所以 D、E、F. .
3.議一議,學(xué)生討論
(1)兩個全等三角形一定相似嗎?為什么?
(2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?
(3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?
結(jié)論:兩 個全等三角形一定相似.
兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.
4.例題
例1、有一塊呈三角形形狀 的草坪,其中一邊的'長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實(shí)際長度.
例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,
ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長.
5.想一想
在例2的條件下,圖中有哪些線段成比例?
Ⅲ.課堂練習(xí) P129
、.課時小結(jié)
相似三角形的 判定方法定義法.
Ⅴ.課后作業(yè)
八年級數(shù)學(xué)教案8
【教學(xué)目標(biāo)】
知識目標(biāo):
解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進(jìn)行單項式與多項式的乘法運(yùn)算。
能力目標(biāo):
。1)經(jīng)歷探索乘法運(yùn)算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;
。2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達(dá)能力。
情感目標(biāo):
充分調(diào)動學(xué)生學(xué)習(xí)的積極性、主動性
【教學(xué)重點(diǎn)】
單項式與多項式的乘法運(yùn)算
【教學(xué)難點(diǎn)】
推測整式乘法的運(yùn)算法則。
【教學(xué)過程】
一、復(fù)習(xí)引入
通過對已學(xué)知識的復(fù)習(xí)引入課題(學(xué)生作答)
1.請說出單項式與單項式相乘的法則:
單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。
(系數(shù)×系數(shù))×(同字母冪相乘)×單獨(dú)的冪
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2.說出多項式2x2-3x-1的.項和各項的系數(shù)項分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1
問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?
這便是我們今天要研究的問題。
二、新知探究
已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)
現(xiàn)將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運(yùn)算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個別同學(xué)作答,教師作評)
結(jié)論單項式與多項式相乘的運(yùn)算法則:
用單項式分別去乘多項式的每一項,再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運(yùn)算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計算:(1)(-2a2)· (3ab2– 5ab3)
。2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年級數(shù)學(xué)教案9
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識與技能
1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的.坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學(xué)教案10
教學(xué)目標(biāo):
知識目標(biāo):
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。
能力目標(biāo):
1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識現(xiàn)實(shí)世界的意識和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感目標(biāo):
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
教學(xué)重點(diǎn):
掌握函數(shù)概念。
判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
能把實(shí)際問題抽象概括為函數(shù)問題。
教學(xué)難點(diǎn):
理解函數(shù)的概念。
能把實(shí)際問題抽象概括為函數(shù)問題。
教學(xué)過程設(shè)計:
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課
『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
……
『師』:當(dāng)你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?
『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運(yùn)動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。
『師』:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的關(guān)系。
大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識世界。下面我們就去研究一些有關(guān)變量的問題。
二、新課學(xué)習(xí)
做一做
(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?
填寫下表:
層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。
。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)
①計算當(dāng)fenbie為50,60,100時,相應(yīng)的.滑行距離S是多少?
、诮o定一個V值,你能求出相應(yīng)的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?
『生』:相同點(diǎn)是:這三個問題中都研究了兩個變量。
不同點(diǎn)是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。
函數(shù)的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
三、隨堂練習(xí)
書P152頁 隨堂練習(xí)1、2、3
四、本課小結(jié)
初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。
函數(shù)的三種表達(dá)式:
圖象;(2)表格;(3)關(guān)系式。
五、探究活動
為了加強(qiáng)公民的節(jié)水意識,某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費(fèi),該市某戶居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?
。ù鸢福篩=1.8x-6或)
六、課后作業(yè)
習(xí)題6.1
八年級數(shù)學(xué)教案11
一.教學(xué)目標(biāo):
1.了解方差的定義和計算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式
3.難點(diǎn)的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點(diǎn),我安排了幾個環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運(yùn)動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的`波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法?梢援嬚劬圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實(shí)際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計意圖:
(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。
3.方差怎樣去體現(xiàn)波動大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
2.段巍和金志強(qiáng)兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?
測試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強(qiáng)10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強(qiáng)的成績要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機(jī)床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級數(shù)學(xué)教案12
學(xué)習(xí)目標(biāo)
1、通過運(yùn)算多項式乘法,來推導(dǎo)平方差公式,學(xué)生的認(rèn)識由一般法則到特殊法則的能力。
2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。
3、初步學(xué)會運(yùn)用平方差公式進(jìn)行計算。
學(xué)習(xí)重難點(diǎn)重點(diǎn):
平方差公式的推導(dǎo)及應(yīng)用。
難點(diǎn)是對公式中a,b的廣泛含義的理解及正確運(yùn)用。
自學(xué)過程設(shè)計教學(xué)過程設(shè)計
看一看
認(rèn)真閱讀教材,記住以下知識:
文字?jǐn)⑹銎椒讲罟剑篲________________
用字母表示:________________
做一做:
1、完成下列練習(xí):
、(m+n)(p+q)
②(a+b)(x-y)
、(2x+3y)(a-b)
、(a+2)(a-2)
、(3-x)(3+x)
、(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請寫出來。
_______________________________
_______________________________
________________________________、
1、下列計算對不對?若不對,請在橫線上寫出正確結(jié)果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、計算:50×49=_________、
應(yīng)用探究
1、幾何解釋平方差公式
展示:邊長a的大正方形中有一個邊長為b的小正方形。
(1)請計算圖的陰影部分的`面積(讓學(xué)生用正方形的面積公式計算)。
(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?
2、用平方差公式計算
(1)103×93 (2)59、8×60、2
拓展提高
1、閱讀題:
我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!
2、仔細(xì)觀察,探索規(guī)律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個位數(shù)、
堂堂清
一、選擇題
1、下列各式中,能用平方差公式計算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
八年級數(shù)學(xué)教案13
教學(xué)目標(biāo):
1.了解軸對稱圖形和兩個圖形關(guān)于某直線對稱的概念.
2.能識別簡單的軸對稱圖形及其對稱軸(直線),能找出兩個圖形關(guān)于某直線對稱的對稱點(diǎn).
3.了解軸對稱圖形與兩個圖形關(guān)于某直線對稱的區(qū)別和聯(lián)系.
教學(xué)重點(diǎn):
1、軸對稱圖形和兩個圖形成軸對稱的概念;
2、探索軸對稱的性質(zhì)。
教學(xué)難點(diǎn):
1、能夠識別軸對稱圖形并找出它的對稱軸;
2、能運(yùn)用其性質(zhì)解答簡單的幾何問題。
教學(xué)方法啟發(fā)誘導(dǎo)法
教具準(zhǔn)備多媒體課件,剪刀,彩色紙
教學(xué)過程
一、情境導(dǎo)入
同學(xué)們,自古以來,對稱圖形被認(rèn)為是和諧、美麗的.不論在自然界里還是在建筑中,不論在藝術(shù)中還是在科學(xué)中,甚至最普通的.日常生活用品中,對稱圖形隨處可見,對稱給我們帶來了美的感受!而軸對稱是對稱中很重要的一種,今天就讓我們一起走進(jìn)軸對稱世界,探索它的秘密吧!
我們先來看一下這節(jié)課的學(xué)習(xí)目標(biāo)
1.了解軸對稱圖形和兩個圖形關(guān)于某直線對稱的概念.
2.能識別簡單的軸對稱圖形及其對稱軸,能找出兩個圖形關(guān)于某直線對稱的對稱點(diǎn).
3.了解軸對稱圖形與兩個圖形關(guān)于某直線對稱的區(qū)別和聯(lián)系.
二、自主探究
【探究一】
。ㄒ唬┪覀兿葋砜磶追鶊D片,觀察它們都有些什么共同特征.
1、它們都是對稱的.
2、它們沿著某條直線折疊后,直線兩旁的部分能完全重合。
。ǘ﹦赢嬚故竞恼郫B過程
(三)做一做
1.準(zhǔn)備一張紙;
2.對折紙;
3.用鉛筆在紙上畫出你喜歡的圖案;
4.剪下你畫的圖案;
5.把紙打開鋪平,觀察所得的圖案,位于折痕兩側(cè)的部分有什么關(guān)系?
【答】能互相重合一模一樣是對稱的
從而得出軸對稱圖形的概念:
如果一個圖形沿著一條直線折疊,只限兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們說這個圖形關(guān)于這條直線對稱。
八年級數(shù)學(xué)教案14
一、教學(xué)目標(biāo)
1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;
2.使學(xué)生能夠求出分式有意義的條件;
3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;
4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識.
二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.
2.疑點(diǎn)及解決辦法 通過類比分?jǐn)?shù)的意義,加強(qiáng)對分式意義的理解.
三、教學(xué)過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學(xué)分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗,可猜想到分式)
【新課】
1.分式的定義
(1)由學(xué)生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:
用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學(xué)生舉幾個分式的例子.
(3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.
、俜帜钢泻凶帜.
②如同分?jǐn)?shù)一樣,分式的分母不能為零.
(4)問:何時分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]
2.有理式的`分類
請學(xué)生類比有理數(shù)的分類為有理式分類:
例1 當(dāng)取何值時,下列分式有意義?
(1);
解:由分母得.
∴當(dāng)時,原分式有意義.
(2);
解:由分母得.
∴當(dāng)時,原分式有意義.
(3);
解:∵恒成立,
∴取一切實(shí)數(shù)時,原分式都有意義.
(4).
解:由分母得.
∴當(dāng)且時,原分式有意義.
思考:若把題目要求改為:“當(dāng)取何值時下列分式無意義?”該怎樣做?
例2 當(dāng)取何值時,下列分式的值為零?
(1);
解:由分子得.
而當(dāng)時,分母.
∴當(dāng)時,原分式值為零.
小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當(dāng)時,分母,分式無意義.
當(dāng)時,分母.
∴當(dāng)時,原分式值為零.
(3);
解:由分子得.
而當(dāng)時,分母.
當(dāng)時,分母.
∴當(dāng)或時,原分式值都為零.
(4).
解:由分子得.
而當(dāng)時,,分式無意義.
∴沒有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結(jié)、擴(kuò)展
1.分式與分?jǐn)?shù)的區(qū)別.
2.分式何時有意義?
3.分式何時值為零?
(五)隨堂練習(xí)
1.填空題:
(1)當(dāng)時,分式的值為零
(2)當(dāng)時,分式的值為零
(3)當(dāng)時,分式的值為零
2.教材P55中1、2、3.
八、布置作業(yè)
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書設(shè)計
課題 例1
1.定義例2
2.有理式分類
八年級數(shù)學(xué)教案15
一、目標(biāo)要求
1.理解掌握分式乘除法運(yùn)算法則。
2.能熟練地運(yùn)用分式乘除法運(yùn)算法則進(jìn)行分式的乘除運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn)是分式乘除法法則。
難點(diǎn)是分子或分母為多項式的分式的乘除法。
1.分式的乘除法法則:
。1)分式乘以分式,用分子的積做積的分子,分母的積做積的分母,用式子表示為=;
。2)分式除以分式,把除式的分子、分母顛倒位置后與被除式相乘,用式子表示為÷ = = 。
2.遇到分式的乘方、乘、除法的混合運(yùn)算,首先要注意運(yùn)算順序,即先乘方、后乘除,而除法運(yùn)算又應(yīng)根據(jù)其法則轉(zhuǎn)化為乘法運(yùn)算;其次要注意運(yùn)算符號法則與分式的.符號法則,最后在約分時要注意分子與分母是為積的形式,若不是則應(yīng)進(jìn)行因式分解。
3.分式的運(yùn)算中不能去分母,因為去分母是等式的性質(zhì),而分式不是等式,分式的運(yùn)算只是對分式進(jìn)行恒等變形。
三、解題方法指導(dǎo)
【例1】計算:
。1)3x2y (-);
。2)6x3y2÷(-) ÷x2;
。3)( )÷(-)(-)
分析:分式的分子與分母是單項式的乘除,先將除法轉(zhuǎn)化為乘法,根據(jù)分式的乘法法則,先確定結(jié)果的符號,然后將系數(shù)相乘除,其余的因式按指數(shù)法則運(yùn)算。
解:
。1)原式=-3x2y =-1。
。2)原式=6x3y2(-)
=-6x3y2 =-。
。3)原式=(-)(-)(-)
=-=-。
【例2】計算:
。1)÷ 。
(2)÷(x+3)
分析:分式的乘除混合運(yùn)算,首先將除法轉(zhuǎn)化為乘法,將分子、分母因式分解后進(jìn)行約分。
解:
。1)原式=
(2)原式= ÷(x+3)
注意:
。1)分式的分子、分母是多項式時,一般先按某一字母的降冪排列,再分解因式,并在運(yùn)算過程中約分,使運(yùn)算簡化。
。2)分式除法中,除式是整式時,可以看作分母是1的式子。要注意乘除法是屬于同一級運(yùn)算,必須嚴(yán)格按從左到右的順序。
四、激活思維訓(xùn)練
▲知識點(diǎn):分式的乘除法運(yùn)算
【例】已知m=,求代數(shù)式÷的值。
分析:首先應(yīng)將代數(shù)式化簡,然后把已知條件變形后代入,即可求出其值。
解:÷ =
=(m+2)(m-2)=m2-4。
∵ m=,∴ m2=1。
∴原式=m2-4=1-4=-3。
五、基礎(chǔ)知識檢測
六、創(chuàng)新能力運(yùn)用
參考答案
【基礎(chǔ)知識檢測】
1.(1)分子的積做分子、分母的積做分母、分子、分母,相乘
2.(1)D(2)D
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案12-09