亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教學(xué)論文>綜合教育論文>從函角度看某些方程、不等式的解(安慶懷寧)

            從函角度看某些方程、不等式的解(安慶懷寧)

            時(shí)間:2022-08-17 11:06:56 綜合教育論文 我要投稿
            • 相關(guān)推薦

            從函角度看某些方程、不等式的解(安慶懷寧)

            從函角度看某些方程、不等式的解(安慶懷寧) 許季龍 3月20日 中學(xué)數(shù)學(xué)里的方程、不等式與函數(shù)間的聯(lián)系是雙向的:一方面函數(shù)的整體性認(rèn)識(shí)要得到議程、不等式以指導(dǎo)。但就目前教材的安排以及其中的例題與習(xí)題的配備來看,這后一方面的聯(lián)系,顯得不足。下面就本人對(duì)高一教材所做過的補(bǔ)充和延伸,舉例談?wù)勱P(guān)于某些方程、不等式的解,可以從六個(gè)方面考慮。  一 從函數(shù)定義域考慮  例1 解方程(x2+2x-3)1/2+(x+3)1/2-(1-x)1/2=x+1  解 設(shè)f(x)=)(x2+2x-3)1/2+(x+3)1/2-(1-x)1/2,則f(x)的定義域取決于  下面不等式組的解:   二 從函數(shù)值域考慮  例2 解方程  (x2-2x+5)1/2+(x6-2x+10)1/2= 4-2x2+x4.  解 設(shè)f(x)= (x2-2x+5)1/2+(x6-2x+10)1/2  g(x)= 4-2x2+x4  因?yàn)閒(x)= [(x-1)2+4)]1/2+[(x3-1)2+9)]1/2≥5;  g(x)= 5-(x2-1)2+x4≤5。  僅當(dāng)x-1=x3-1=x2-1=0時(shí), f (x)= + g(x),從而推出原方程的解為x=1。  例3 解方  x+1/x=sinx+31/33cosx.  解 令=x+1/x,  g(x)=sinx+31/3cosx  易證:| f(x)|= | x+1/x|=|x|+1/|x|≥2;  |g(x)|=| 2sina(x+π/3|≤2  但是當(dāng)|f(±1)|=2時(shí),但是當(dāng)| g (±1)|≠2時(shí).所以原方程沒有  解.  三 結(jié)合函數(shù)定義域、值域考慮  例4 解方程  (3x2-10x+8)1/2+(2x2-x-6)1/2=2x-4  解 令f(x)= (3x2-10x+8)1/2+(2x2-x-6)1/2,  g(x)= 2x-4.  ∵f(x)≥0,∴g(x)= 2x-4≥0.于是x≥2.  又3x2-10x+8=(x-2)(3x-4)≥0;  2x2-x-6=(x-2)(2x+3)≥0  所以, f(x)、g(x)的定義域是x≥2。在此條件下原方程又可化  為:  (x-2)1/2[(3x-4)1/2+(2x+3)1/2=2[(x-2)2]1/2.它的解為下列方二程  之解:  x-2=0; (1)  (3x-4)1/2+(2x+3)1/2=2(x-2)1/2  (2)  解(1)得x=2;而(2)沒有解,事實(shí)上,將(2)式移項(xiàng)得  (3x-4)1/2-(x-2)1/2=(x-2)1/2-(2x+3)1/2,再采用分子有理化的方法,得到  (2x-2)/[(3x-4)1/2+(x-2)1/2]=-(x+5)/(x-2)1/2+(2x+3)1/2  當(dāng)x≥2時(shí),上式左邊函數(shù)值為正,右邊的函數(shù)值為負(fù)。得出矛盾。  經(jīng)檢驗(yàn)原方程僅有一解x=2。  四 結(jié)合函數(shù)性質(zhì)考慮  例5 解方程(2x+7)1/2-(2-x)1/2=(5-x)1/2  解 設(shè)f(x)= (2x+7)1/2;g(x)=(5-x)1/2-(2-x)1/2.在它們共  同的定義域里,f(x)嚴(yán)格遞增,g(x)嚴(yán)格遞減且原方程與方程f(x)=- g(x)同解.顯然 f(1)=g(1),并且x>/時(shí),時(shí),f(x)>f(1)=g(1)>g(x);  x<1時(shí),f(x) 這就是說f(x)=g(x)僅有一解`x=1.  例6 解不等式1-(1-4x2)1/2/x<3.  解 設(shè)不等式左邊為f(x),不難確定其定義域是[-1/2,0)∪  (0,1/2].當(dāng)02)1/2],容易看出,它的分子不超過2,分母總是不小于1的.因此,0 推得原不等式的解集就是[-1/2,0)∪(0,1/2]  五 結(jié)合函數(shù)的幾何意義考慮  例7 解方程  [x+3-4(x-1)1/2]1/2+[x+8-6(x-1)1/2]1/2=1  解原方x-1)程可變形為  {[( 1/2-2]2}1/2+{[(x-1)1/2-3]2}1/2=1  令 (x-1)1/2=u,則有  │u-2│+錯(cuò)誤!鏈接無效。=1。  這個(gè)不等式的幾何意義是;在u軸上,點(diǎn)u到點(diǎn)2與點(diǎn)頭的距離  之和等于1。  不難得到2≤u≤3,即2≤(x-1)1/2≤3從而解得5≤x≤10  例8 求證:妝a (x-b)(x-d)=0必有實(shí)根.  證 令f(x)=(x-a)(x-c)+λ(x-b)(x-d),從幾何意義考慮,本題  要討論對(duì)任何實(shí)數(shù)λ,函數(shù)f(x)的圖象與x輕于某一點(diǎn);  (2)當(dāng)λ>-1時(shí),  f(x)=(1+λ)x2-[(a+c)+λ(b+d)]x-(ac+λbd),因?yàn)檫@時(shí)(1+λ)  >0,所以f(x)代表了一個(gè)開口向上的拋物線.倘能說明函數(shù)f(x)的圖象在x軸下方有點(diǎn),再據(jù)二次函數(shù)圖象的性質(zhì):連續(xù)向上無限伸展,可知它的圖象必與x軸有二交點(diǎn).事實(shí)上,由f(b)= (b-a)(b-c+)λ(b-b)(b-d)<(b-c)<0可知點(diǎn)(b,f(b))在x軸下方:  (3) λ<-1時(shí),拋物線f(x)這時(shí)開口向下,又f(c)=λ(c-b)(c-d)>0,可知點(diǎn)(c,f(c))在x軸上方,因此,拋物線f(x)必與x軸有二個(gè)交點(diǎn).  綜上所述,得知原題結(jié)論成立.  六 結(jié)合函數(shù)與反函數(shù)考慮  例9 解方程組  y=10x (1)  y-1ga=-(x-a) (2)  解 將(1)看作是指數(shù)函數(shù)的圖象;而(2)的幾何解釋是一條斜率  等于-1的直線.不難證明這條直線垂直于直線y=x,并經(jīng)過y=1gx圖象上一點(diǎn)(a,1ga)。解此方程組就是求曲線(1)與直線(2)的交點(diǎn)。  因?yàn)閥=10x與y=1ogx互為相反函數(shù),它們的圖象關(guān)于直線y=x對(duì)稱。而直線(2)又與對(duì)稱軸相垂,根據(jù)平面幾何對(duì)稱的知識(shí),曲線(1)與直線(2)的交點(diǎn),必是點(diǎn)(a,1ga)關(guān)于直線y=x為對(duì)稱的點(diǎn),所以這點(diǎn)坐標(biāo)為(1ga,a)。于是原方程的解是x=1ga.y=a  實(shí)踐表明,補(bǔ)充一些從函數(shù)整體性認(rèn)識(shí)出發(fā),兼顧到方程和不等式各部分間關(guān)系的練習(xí),對(duì)于鞏固并加深函數(shù)性質(zhì)的認(rèn)訓(xùn),對(duì)于提高解方程、解不等式的能力都有較好的效果。  (載1986年第7期《中學(xué)數(shù)學(xué)》)     安慶懷寧        


            【從函角度看某些方程、不等式的解(安慶懷寧)】相關(guān)文章:

            《解簡易方程》說課稿范文05-09

            解簡易方程教學(xué)反思04-07

            解簡易方程的教學(xué)反思02-22

            《解簡易方程》教學(xué)反思03-10

            解簡易方程數(shù)學(xué)教案02-08

            數(shù)學(xué)解簡易方程教學(xué)反思02-08

            不等式及其解集教學(xué)反思04-18

            解簡易方程教學(xué)反思11篇04-15

            解簡易方程教學(xué)反思(11篇)04-15

            《解簡易方程》教學(xué)反思10篇04-15