數(shù)學(xué)必修教學(xué)計劃9篇
時間過得太快,讓人猝不及防,很快就要開展新的工作了,是時候認(rèn)真思考計劃該如何寫了。擬起計劃來就毫無頭緒?以下是小編為大家整理的數(shù)學(xué)必修教學(xué)計劃,歡迎大家借鑒與參考,希望對大家有所幫助。
數(shù)學(xué)必修教學(xué)計劃1
本學(xué)期的措施及打算
1.一周學(xué)習(xí)早知道。明確目標(biāo)更能確定努力的方向。為了讓學(xué)生學(xué)習(xí)更有目的性,有效性和積極性,每周第一節(jié)課給出一周的教學(xué)進(jìn)度,學(xué)習(xí)目標(biāo)和過關(guān)要求。不僅老師要做到對所教內(nèi)容清楚明了,也要讓學(xué)生對所學(xué)內(nèi)容做到每周學(xué)習(xí)目標(biāo)清晰化。
2.落實“每周測試”過關(guān)制。周測內(nèi)容與一周學(xué)習(xí)目標(biāo)及一周的講授內(nèi)容緊密相連。未盡力而又沒有過關(guān)的學(xué)生將按事先說明的措施給予處罰。以便讓學(xué)生重視課堂學(xué)習(xí),重視平時作業(yè),重視一周的學(xué)習(xí)過程。做到讓學(xué)生每周學(xué)習(xí)過程精細(xì)化。
3.根據(jù)學(xué)生學(xué)力狀況進(jìn)行分層次的培優(yōu)補(bǔ)差。
三、教學(xué)進(jìn)度安排
周次學(xué)習(xí)內(nèi)容目標(biāo)要求
1必修4 第一章三角函數(shù):第1至3節(jié)周期,角的推廣及表示,弧度制及互化
2軍訓(xùn)
3第4節(jié):正弦函數(shù)單位圓,正弦函數(shù)定義,象限符號,誘導(dǎo)公式,五點(diǎn)法畫圖像,圖像及性質(zhì)。
4第5節(jié):余弦函數(shù),第6節(jié)正切函數(shù)余弦函數(shù)正切函數(shù)定義,象限符號,誘導(dǎo)公式,圖像及性質(zhì)
5第7節(jié): 的圖像,第8節(jié):同角的基本關(guān)系。圖像變換規(guī)律,同角三角函數(shù)的基本關(guān)系及其運(yùn)用。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
6第二章:平面向量:第1節(jié)至第2節(jié)向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運(yùn)算
7第3節(jié)至第5節(jié)數(shù)乘向量,基本定理,向量運(yùn)算的鞏固訓(xùn)練,平面向量的.坐標(biāo)表示及運(yùn)算。數(shù)量積的應(yīng)用。
8第5節(jié)至第7節(jié)數(shù)量積的應(yīng)用及坐標(biāo)表示,向量應(yīng)用舉例。習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
9第三章:三角恒等變換:第1節(jié)至第2節(jié)兩角和差的公式得推導(dǎo),記憶及靈活運(yùn)用,二倍角公式得來源及運(yùn)用。期中復(fù)習(xí)。
10期中考試期中復(fù)習(xí),期中考試。
11第三章第3節(jié):三角函數(shù)的簡單應(yīng)用試卷講評改錯,簡單應(yīng)用,三角恒等變換的綜合習(xí)題課,練習(xí),章節(jié)復(fù)習(xí),必修4基本測試。
12“五。一”長假
13必修3第一章:統(tǒng)計。第1節(jié)至第5節(jié)統(tǒng)計的程序,統(tǒng)計圖,統(tǒng)計方案設(shè)計,普查與抽樣,抽樣方法,分層抽樣與系統(tǒng)抽樣,花統(tǒng)計圖表及讀統(tǒng)計圖表,數(shù)字特征:平均數(shù),中位數(shù),眾數(shù),級差,方差的意義及計算分析,
14第6節(jié)至第9節(jié)樣本對總本的估計及相應(yīng)的數(shù)字特征的計算分析,統(tǒng)計實踐活動,變量的相關(guān)性及例題分析,最小二乘估計。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
15第二章:算法初步:第1節(jié)至第3節(jié)基本思想,基本結(jié)構(gòu)及設(shè)計,排序問題。
16第4節(jié):幾種基本語句條件語句,循環(huán)語句,復(fù)習(xí)三角函數(shù)的基本內(nèi)容,章節(jié)復(fù)習(xí),三角函數(shù)與算法初步過關(guān)測試。
17第三章:概率:第1節(jié)至第2節(jié)頻率,概率,古典概率,概率計算公式。
18第2節(jié)至第3節(jié)建概率模型,互斥事件,習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
19期末復(fù)習(xí)
20期末復(fù)習(xí),期末考試
數(shù)學(xué)必修教學(xué)計劃2
(一) 創(chuàng)設(shè)情景,引入新課
(借助多媒體)給出一張王小丫的圖片(學(xué)生情緒高漲),大家都知道王小丫是cctv-2“開心詞典”的欄目主持人,下面王小丫給大家出題啦!
觀察下列各數(shù)列,并填空,然后總結(jié)它們有什么共同的特點(diǎn)?具有什么性質(zhì)?你能給它們起個名字嗎?
、1,2,3,4,5,6,7,8, ,…
、3,6,9,12,15, ,21,24,…
、-1,-3,-5,-7,-9,-11, ,-15,…
、2,2,2,2,2,2, ,2,2,…
設(shè)計思路:1.通過幾個具體的等差數(shù)列,為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。2.由學(xué)生觀察數(shù)列特點(diǎn),初步認(rèn)識等差數(shù)列的特征,為后面引出等差數(shù)列的概念學(xué)習(xí)建立基礎(chǔ)。3.學(xué)生已具備一定的觀察能力和抽象概括能力,完全有條件、有可能發(fā)現(xiàn)它們的共同特點(diǎn)和性質(zhì)。4.對問題的總結(jié)可以培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。5.按照“觀察--猜想--證明”的思維模式設(shè)計問題,符合學(xué)生的認(rèn)知規(guī)律,更培養(yǎng)學(xué)生完整地認(rèn)識數(shù)學(xué)體系。
(二) 啟發(fā)誘導(dǎo)、探求新知
1、由學(xué)生的總結(jié)自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
思考并交流對概念的理解,并總結(jié):
①“從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強(qiáng)調(diào)“同一個常數(shù)”);
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式: (n≥1)
同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1). 9 ,8,7,6,5,4,……;√ d=-1
2). 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3). 0,0,0,0,0,0,…….; √ d=0
4). 1,2,3,2,3,4,……;×
5). 1,0,1,0,1,……×
其中第一個數(shù)列公差d<0 d="">0,第三個數(shù)列公差d=0
由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0
2、第二個重點(diǎn)部分為等差數(shù)列的.通項公式
(1)若一等差數(shù)列{an}的首項是,公差是d,則據(jù)其定義可得:
a2-a1=d 即:a2=a1+d
a3-a2=d 即:a3=a2+d
……
猜想:
a40= a1+39d
進(jìn)而歸納出等差數(shù)列的通項公式: an=a1+(n-1)d
設(shè)計思路:在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項,公差d,由學(xué)生研究分組討論的通項公式。通過總結(jié)的通項公式由學(xué)生猜想的通項公式,進(jìn)而歸納 的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識,又化解了教學(xué)難點(diǎn)。
(2)此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——迭加法:
a2-a1=d
a3=a2+d
……
an-an-1=d 將這n-1個等式左右兩邊分別相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,當(dāng)n=1時,此式也成立,所以對一切n∈N﹡,上面的公式都成立,因此它就是等差數(shù)列{an }的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。將n-1個等式相加,證出通項公式。在這里通過該知識點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求。
(三)鞏固新知應(yīng)用例解
例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項
(2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
例2 在等差數(shù)列{an}中,已知a5=10, a20=31,求首項與公差d。
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項公式含義的理解以及對通項公式的運(yùn)用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動變化的觀點(diǎn)看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的三個量已知時,可根據(jù)該公式求出第四個量。
例3 梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
設(shè)置此題的目的:1.加強(qiáng)同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建模”的數(shù)學(xué)思想方法。
(四)反饋練習(xí)
1、課后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。
目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。
2、課后習(xí)題第3題和第4題。
目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。
(五)歸納小結(jié)、深化目標(biāo)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式an-an-1=d (n≥1)。
強(qiáng)調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。
2.等差數(shù)列的通項公式會知三求一。
3.用“數(shù)學(xué)建模”思想方法解決實際問題。
(六)布置作業(yè)
必做題:課本習(xí)題第2,6 題
選做題:已知等差數(shù)列{an}的首項= -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
數(shù)學(xué)必修教學(xué)計劃3
一、教學(xué)目標(biāo):
1、知識與技能
、 理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊(yùn)含的數(shù)學(xué)原理,并能根據(jù)這些原理進(jìn)行算法分析;
、 基本能根據(jù)算法語句與程序框圖的知識設(shè)計完整的程序框圖并寫出算法程序.
2、過程與方法
在輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的學(xué)習(xí)過程中對比我們常見的約分求公因式的方法,比較它們在算法上的區(qū)別,并從程序的學(xué)習(xí)中體會數(shù)學(xué)的嚴(yán)謹(jǐn),領(lǐng)會數(shù)學(xué)算法與計算機(jī)處理的結(jié)合方式,初步掌握把數(shù)學(xué)算法轉(zhuǎn)化成計算機(jī)語言的一般步驟.
3、情感與價值觀
、 通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn).
、 在學(xué)習(xí)古代數(shù)學(xué)家解決數(shù)學(xué)問題的方法的過程中培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力,在利用算法解決數(shù)學(xué)問題的過程中培養(yǎng)理性的精神和動手實踐的能力.
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的方法.
難點(diǎn):把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語言.
三、教學(xué)過程:
(一)創(chuàng)設(shè)情景、導(dǎo)入課題
1.研究一個實際問題的算法,主要從哪幾方面展開?
算法步驟、程序框圖和編寫程序三方面展開.
2.在程序框圖中算法的基本邏輯結(jié)構(gòu)有哪幾種?
順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
3.在程序設(shè)計中基本的算法語句有哪幾種?
輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句
4.思考1:18與30的'最大公約數(shù)是多少?你是怎樣得到的?
5. 思考2:對于8251與6105這兩個數(shù),它們的最大公約數(shù)是多少?你是怎樣得到的?
由于它們公有的質(zhì)因數(shù)較大,利用上述方法求最大公約數(shù)就比較困難.有沒有其它的方法可以較簡單的找出它們的最大公約數(shù)呢?
(板書課題)
(二)師生互動、探究新知
1. 輾轉(zhuǎn)相除法
思考3:注意到8251=6105×1+2146,那么8251與6105這兩個數(shù)的公約數(shù)和6105與2146的公約數(shù)有什么關(guān)系?
我們發(fā)現(xiàn)6105=2146×2+1813,同理,6105與2146的公約數(shù)和2146與1813的公約數(shù)相等.
思考4:重復(fù)上述操作,你能得到8251與6105這兩個數(shù)的最大公約數(shù)嗎?
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法,也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的.
利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
第一步:用較大的數(shù)m除以較小的數(shù)n得到一個商 和一個余數(shù) ;
第二步:若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個商 和一個余數(shù) ;
第三步:若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) 除以余數(shù) 得到一個商 和一個余數(shù) ;
……
依次計算直至 =0,此時所得到的 即為所求的最大公約數(shù).
思考5:你能把輾轉(zhuǎn)相除法編成一個計算機(jī)程序嗎?
第一步,給定兩個正整數(shù)m,n(m>n).
第二步,計算m除以n所得的余數(shù)r.
第三步,m=n,n=r.
第四步,若r=0,則m,n的最大公約數(shù)等于m;否則,返回第二步.
INPUT m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL r=0
PRINT m
END
數(shù)學(xué)必修教學(xué)計劃4
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點(diǎn)的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點(diǎn)和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實課外活動的內(nèi)容。組織和加強(qiáng)數(shù)學(xué)興趣小組的'活動內(nèi)容。
三、教學(xué)內(nèi)容
第一章集合與函數(shù)概念
1.通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補(bǔ)集的含義,會求給定子集的補(bǔ)集。
7.能使用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
9.在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時分配(14課時)
第二章基本初等函數(shù)(I)
1.通過具體實例,了解指數(shù)函數(shù)模型的實際背景。
2.理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。
3.理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機(jī)畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。
4.在解決簡單實際問題過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。
5.理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及其對簡化運(yùn)算的作用。
6.通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機(jī)畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn)。
7.通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時分配(15課時)
第三章函數(shù)的應(yīng)用
1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2.利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
3.收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。
4.根據(jù)某個主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實生活中的函數(shù)實例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級中進(jìn)行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數(shù)的零點(diǎn) | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數(shù)模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數(shù)模型的應(yīng)用實例 | 約2課時 | |
小結(jié) | 約1課時 |
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點(diǎn)、難點(diǎn)、易錯點(diǎn),各個擊破,夯實基礎(chǔ),規(guī)范答題,一定會穩(wěn)中求進(jìn),取得優(yōu)異的成績。
數(shù)學(xué)必修教學(xué)計劃5
一、指導(dǎo)思想:
使學(xué)生學(xué)好從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識和基本技能,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力,以逐步形成運(yùn)用數(shù)學(xué)知識來分析和解決實際問題的能力。要培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,激勵學(xué)生為實現(xiàn)四個現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點(diǎn)。
二、基本情況分析:
1、4班共人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。xx5班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約人,中等生約xx人,中下生約xx人,差生約xx人。
2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100’及以上的'有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分為xx,最低分為xx。
5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分為xx,最低分為xx。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結(jié)果是:
三、教材分析:
1、教材內(nèi)容:集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。
2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一;函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。
3、教材重點(diǎn):幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項公式、前n項和的公式。
4、教材難點(diǎn):關(guān)于集合的各個基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、
5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。
6、采用了由淺入深、減緩坡度、分散難點(diǎn),逐步展開教材內(nèi)容的做法,符合從有限到無限的認(rèn)識規(guī)律,體現(xiàn)了從量變到質(zhì)變和對立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對獨(dú)立,方法比較單一,有助于掌握每一階段內(nèi)容。
7、各部分知識之間的聯(lián)系較強(qiáng),每一階段的知識都是以前一階段為基礎(chǔ),同時為下階段的學(xué)習(xí)作準(zhǔn)備。
8、全期教材重要的內(nèi)容是:集合運(yùn)算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項和前n項和。
四、教學(xué)要求:
1、理解集合、子集、交集、并集、補(bǔ)集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
數(shù)學(xué)必修教學(xué)計劃6
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點(diǎn)的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點(diǎn)和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實課外活動的內(nèi)容。組織和加強(qiáng)數(shù)學(xué)興趣小組的活動內(nèi)容。
三、教學(xué)內(nèi)容
第一章集合與函數(shù)概念
1.通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的.子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補(bǔ)集的含義,會求給定子集的補(bǔ)集。
7.能使用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
9.在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時分配(14課時)
1.1.1 | 集合的含義與表示 | 約1課時 | 9月1日 |
1.1.2 | 集合間的基本關(guān)系 | 約1課時 | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本運(yùn)算 | 約2課時 | |
小結(jié)與復(fù)習(xí) | 約1課時 | ||
1.2.1 | 函數(shù)的概念 | 約2課時 | |
1.2.2 | 函數(shù)的表示法 | 約2課時 | 9月13日 | | 9月25日 |
1.3.1 | 單調(diào)性與最大(。┲ | 約2課時 | |
1.3.2 | 奇偶性 | 約1課時 | |
小結(jié)與復(fù)習(xí) | 約2課時 |
第二章基本初等函數(shù)(I)
1.通過具體實例,了解指數(shù)函數(shù)模型的實際背景。
2.理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算。
3。理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機(jī)畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。
4.在解決簡單實際問題過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。
5。理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及其對簡化運(yùn)算的作用。
6。通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機(jī)畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn)。
7.通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時分配(15課時)
2.1.1 | 引言、指數(shù)與指數(shù)冪的運(yùn)算 | 約3課時 | 9月27日30日 |
2.1.2 | 指數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月8日10日 |
2.2.1 | 對數(shù)與對數(shù)運(yùn)算 | 約3課時 | 10月11日14日 |
2.2.2 | 對數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月15日18日 |
2.3 | 冪函數(shù) | 約1課時 | 10月19日24日 |
小結(jié) | 約2課時 |
第三章函數(shù)的應(yīng)用
1。結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2。利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
3。收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。
4。根據(jù)某個主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實生活中的函數(shù)實例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級中進(jìn)行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數(shù)的零點(diǎn) | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數(shù)模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數(shù)模型的應(yīng)用實例 | 約2課時 | |
小結(jié) | 約1課時 |
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點(diǎn)、難點(diǎn)、易錯點(diǎn),各個擊破,夯實基礎(chǔ),規(guī)范答題,一定會穩(wěn)中求進(jìn),取得優(yōu)異的成績。
數(shù)學(xué)必修教學(xué)計劃7
一、指導(dǎo)思想:
在學(xué)校教學(xué)工作意見指導(dǎo)下,在年級部工作的框架下,認(rèn)真落實學(xué)校對備課組工作的各項要求,嚴(yán)格執(zhí)行學(xué)校的各項教育教學(xué)制度和要求,強(qiáng)化數(shù)學(xué)教學(xué)研究,提高全組老師的教學(xué)、教研水平,明確任務(wù),團(tuán)結(jié)協(xié)作,圓滿完成教學(xué)教研任務(wù)。
二、教材簡析
使用人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。
三、教學(xué)任務(wù)
本學(xué)期上半期授課內(nèi)容為《選修1-2》和《選修4-4》,中段考后進(jìn)入第一輪復(fù)習(xí)。
四.學(xué)生基本情況及教學(xué)目標(biāo)
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進(jìn)”,使每個學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。
高二文科學(xué)生共有10個班,其中尖尖班2個,8個平行重點(diǎn)班。尖尖班的學(xué)生重點(diǎn)是數(shù)學(xué)尖子生的培養(yǎng),沖刺高考數(shù)學(xué)高分為目標(biāo)。平行班學(xué)生的主要任務(wù)有兩點(diǎn),第一點(diǎn):保證重點(diǎn)學(xué)生的'數(shù)學(xué)成績穩(wěn)步上升,成為學(xué)生的優(yōu)勢科目;第二點(diǎn):加強(qiáng)數(shù)學(xué)學(xué)習(xí)比較困難學(xué)生的輔導(dǎo)培養(yǎng),增加其信息并逐步縮小數(shù)學(xué)成績差距。
五、教法分析:
1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。
3.在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
六、教學(xué)措施:
1、認(rèn)真落實,搞好集體備課。每兩周進(jìn)行一次集體備課。各組老師根據(jù)自已承擔(dān)的任務(wù),提前一周進(jìn)行單元式的備課,并出好本周的單頁練習(xí)。教研會時,由一名老師作主要發(fā)言人,對本周的教材內(nèi)容作分析,然后大家研究討論其中的重點(diǎn)、難點(diǎn)、教學(xué)方法等。
2、詳細(xì)計劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料《導(dǎo)學(xué)案》,要求學(xué)生按教學(xué)進(jìn)
度完成相應(yīng)的習(xí)題,教師要提前向?qū)W生指出不做的題,以免影響學(xué)生的時間,每周以內(nèi)容“滾動式”編一份練習(xí)試卷,學(xué)生完成后老師要收齊批改,對存在的普遍性問題要安排時間講評。
3、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。尖尖班的教學(xué)進(jìn)度可適當(dāng)調(diào)整,教學(xué)難度要有所提升;其他各班要培育好本班的優(yōu)生,注意激發(fā)學(xué)生的學(xué)習(xí)興趣,隨時注意學(xué)生學(xué)習(xí)方法的指導(dǎo)。備課組也將組織學(xué)生上培優(yōu)班。
4、加強(qiáng)輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進(jìn)行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。并根據(jù)需要在年級開設(shè)數(shù)學(xué)困難生補(bǔ)充輔導(dǎo)班。
七、其他說明
1、單元測試試卷按照周末卷出題順序出題,期中、期末考試試卷另行安排
2、如有特殊情況根據(jù)實際情況安排
數(shù)學(xué)必修教學(xué)計劃8
一、教學(xué)目標(biāo):
1、知識與技能
(1)正確理解輸入語句、輸出語句、賦值語句的結(jié)構(gòu);
(2)會寫一些簡單的程序;
(3)掌握賦值語句中的“=”的作用.
2、過程與方法
(1)讓學(xué)生充分地感知、體驗應(yīng)用計算機(jī)解決數(shù)學(xué)問題的方法;并能初步操作、模仿;
(2)通過對現(xiàn)實生活情境的探究,嘗試設(shè)計出解決問題的程序,理解邏輯推理的數(shù)學(xué)方法.
3、情感與價值觀
通過本節(jié)內(nèi)容的學(xué)習(xí),使我們認(rèn)識到計算機(jī)與人們生活密切相關(guān),增強(qiáng)計算機(jī)應(yīng)用意識,提高學(xué)生學(xué)習(xí)新知識的興趣.
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):正確理解輸入語句、輸出語句、賦值語句的.作用.
難點(diǎn):準(zhǔn)確寫出輸入語句、輸出語句、賦值語句.
三、教學(xué)過程:
(一)復(fù)習(xí)提問、導(dǎo)入課題
1.算法的的基本邏輯結(jié)構(gòu)有哪幾種?
2.設(shè)計一個算法的程序框圖的基本思路如何?
第一步,用自然語言表述算法步驟.
第二步,確定每個算法步驟所包含的邏輯結(jié)構(gòu),并用相應(yīng)的程序框圖表示.
第三步,將所有步驟的程序框圖用流程線連接起來,并加上兩個終端框.
計算機(jī)完成任何一項任務(wù)都需要算法.但是,用自然語言或程序框圖表示的算法,計算機(jī)是無法“理解”的.因此還需要將算法用計算機(jī)能夠理解的程序設(shè)計語言(programming- language)來表示計算機(jī)程序.
程序設(shè)計語言有很多種.為了實現(xiàn)算法的三種基本邏輯結(jié)構(gòu),各種程序設(shè)計語言中都包含下列基本的算法語句,并且形式類似.
輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句
(板書課題)
(二)師生互動、新課講解
我們知道,順序結(jié)構(gòu)是任何一個算法都離不開的基本結(jié)構(gòu).輸入、輸出語句和賦值語句基本上對應(yīng)于算法中的順序結(jié)構(gòu).(如右圖)計算機(jī)從上而下按照語句排列的順序執(zhí)行這些語句
步驟n+1
步驟n
輸入語句和輸出語句
輸入語句和輸出語句分別用來實現(xiàn)算法的輸入信息,輸出結(jié)果的功能.
輸入語句、輸出語句分別與程序框圖中的輸入、輸出框?qū)?yīng).
在每個程序框圖中,輸入框與輸出框是兩個必要的程序框,我們用什么圖形表示這個程序框?其功能作用如何?
表示一個算法輸入和輸出的信息.
例1(課本P21例1):已知函數(shù) ,求自變量x對應(yīng)的函數(shù)值的算法步驟如何設(shè)計?
算法:
第一步,輸入一個自變量x的值.
第二步,計算
第三步,輸出y.
程序框圖: 程序:
INPUT “x=”;x
y=x^3+3*x^2-24*x+30
PRINT “y=”;y
END
開始
輸入x
結(jié)束
輸出y
y=x3+3x2-24x+30
這個程序由4個語句行組成,計算機(jī)按語句行排列的順序依次執(zhí)行程序中的語句,最后一行的END語句表示程序到此結(jié)束.
、僭谠摮绦蛑械1行中的INPUT語句就是輸入語句.這個語句的一般格式是:
INPUT “提示內(nèi)容”;變量
其中,“提示內(nèi)容”一般是提示用戶輸入什么樣的信息,它可以用字母、符號、文字等來表述. 變量是指程序在運(yùn)行時其值是可以變化的量,一般用字母表示. INPUT語句不但可以給單個變量賦值,還可以給多個變量賦值,若輸入多個變量,變量與變量之間用逗號隔開. 提示內(nèi)容加引號,提示內(nèi)容與變量之間用分號隔開.
其格式為:
INPUT “提示內(nèi)容1,提示內(nèi)容2,提示內(nèi)容3,…”;變量1,變量2,變量3,…
練習(xí):嘗試把輸入框轉(zhuǎn)化為輸入語句
輸入a,b,c
解:INPUT “a,b,c=”;a,b,c
②在該程序中,第3行中的PRINT語句是輸出語句。它的一般格式是:
PRINT “提示內(nèi)容”;表達(dá)式
數(shù)學(xué)必修教學(xué)計劃9
一、目標(biāo)要求
1.深入鉆練教材,在借鑒她校課件基礎(chǔ)上,結(jié)合所教學(xué)生實際,確定好每節(jié)課所教內(nèi)容,及所采用的教學(xué)手段、方法。
2.本期還要幫助學(xué)生搞好《數(shù)學(xué)》必修內(nèi)容的復(fù)習(xí),一是為學(xué)生學(xué)業(yè)水平檢測作準(zhǔn)備,二是為高三復(fù)習(xí)打基礎(chǔ)。
3.本期的專題選講務(wù)求實效。
4.繼續(xù)培養(yǎng)學(xué)的學(xué)習(xí)興趣,幫助學(xué)生解決好學(xué)習(xí)教學(xué)中的困難,提高學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力。
5.本期重點(diǎn)培養(yǎng)和提升學(xué)生的`抽象思維、概括、歸納、整理、類比、相互轉(zhuǎn)化、數(shù)形結(jié)合等能力,提高學(xué)生解題能力。
二、教學(xué)措施:
1、認(rèn)真落實,搞好集體備課。每周至少進(jìn)行一次集體備課,每位老師都要提前一周進(jìn)行單元式的備課,集體備課時,由一名老師作主要發(fā)言人,對下一周的教材內(nèi)容作分析,然后大家研究討論其中的重點(diǎn)、難點(diǎn)、教學(xué)方法等。在星期一的集合備課中,主要是對上周備課中的情況作補(bǔ)充。每次備課都要用一定的時間交流一下前一段的教學(xué)情況,進(jìn)度、學(xué)生掌握情況等。
2、詳細(xì)計劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料是《高中數(shù)學(xué)新新學(xué)案》,要求學(xué)生按教學(xué)進(jìn)度完成相應(yīng)的習(xí)題,老師要給予檢查和必要的講評,老師要提前向?qū)W生指出不做的題,以免影響學(xué)生的學(xué)習(xí)。每周以內(nèi)容滾動式編一份練習(xí)試卷,星期五發(fā)給學(xué)生帶回家完成,星期一交,老師要進(jìn)行批改,存在的普遍性問題最好安排時間講評。試題量控制為10道選擇題(4舊6新)、4道填空題(1舊3新)、4道解答題。
3、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。本學(xué)期第二課堂與數(shù)學(xué)競賽準(zhǔn)備班繼續(xù)分開進(jìn)行輔導(dǎo)。平常意義上的第二課堂輔導(dǎo)學(xué)生,主要是以興趣班的形式,以復(fù)習(xí)鞏固課堂教學(xué)的同步內(nèi)容為主,一般只選用常規(guī)題為例題和練習(xí),難度低于高考接近高考,用專題講授為主要形式開展輔導(dǎo)工作。
4、加強(qiáng)輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要,所以每位老師必須重視搞好輔導(dǎo)工作。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進(jìn)行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。
總結(jié):以上就是下學(xué)期高二必修數(shù)學(xué)教學(xué)計劃,希望對您的教學(xué)有所幫助。
【數(shù)學(xué)必修教學(xué)計劃】相關(guān)文章:
數(shù)學(xué)必修4教案01-12
必修二教學(xué)計劃03-20
生物必修二教學(xué)計劃01-16
物理必修二教學(xué)計劃12-10
語文必修一教學(xué)計劃03-25
物理必修一教學(xué)計劃03-24