倍數(shù)和因數(shù)教學(xué)反思
身為一名人民老師,我們要在課堂教學(xué)中快速成長,對教學(xué)中的新發(fā)現(xiàn)可以寫在教學(xué)反思中,如何把教學(xué)反思做到重點(diǎn)突出呢?下面是小編整理的倍數(shù)和因數(shù)教學(xué)反思,希望對大家有所幫助。
倍數(shù)和因數(shù)教學(xué)反思1
教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時做了一些改動,讓學(xué)生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到12是3的倍數(shù),反過來3就是12的'因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。
如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。
倍數(shù)和因數(shù)教學(xué)反思2
北師大版五年級數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式加以說明,進(jìn)而讓學(xué)生探究尋找一個數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個數(shù)的倍數(shù)。從教材本身來看,這部分知識對于五年級學(xué)生而言,沒有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動、探究中掌握相應(yīng)的知識,讓乏味變成有味呢?我從以下兩個方面談一點(diǎn)教學(xué)體會。
一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花。
良好的開頭是成功的一半。我采用一道腦筋急轉(zhuǎn)彎題作為談話引入課題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點(diǎn):一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。
教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計讓學(xué)生獨(dú)立探究尋找2的倍數(shù)、5的倍數(shù),學(xué)生發(fā)現(xiàn)2的倍數(shù)、5的倍數(shù)寫不完時,通過討論,認(rèn)為用省略號表示比較恰當(dāng),用語文中的'一個標(biāo)點(diǎn)符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗(yàn)到解決問題的愉快感和掌握新知的成就感。
二、滲透學(xué)法,形成學(xué)習(xí)的技能。
由于一個數(shù)倍數(shù)的個數(shù)是無限的,那么如何讓學(xué)生體會“無限”、又如何有序?qū)懗鰜砟兀课易寣W(xué)生嘗試說出3的倍數(shù)。學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學(xué)生展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因?yàn)橛行,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,因?yàn)楹喗菡_率高所以覺得好。如此的交流雖然花費(fèi)了“寶貴”的學(xué)習(xí)時間,但是學(xué)生從中能體會到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風(fēng)光無限。
三、學(xué)練結(jié)合,及時把握學(xué)生學(xué)情。
在學(xué)生通過具體例子初步認(rèn)識了倍數(shù)和因數(shù)以后,通過大量的練習(xí)讓學(xué)生在練習(xí)中感悟,練習(xí)中加深理解概念;在探究出找倍數(shù)的方法以后,及時讓學(xué)生寫出2的倍數(shù)、5的倍數(shù),從而引導(dǎo)學(xué)生發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點(diǎn),并適時進(jìn)行針對性練習(xí),鞏固新知。
課尾,我設(shè)計了四道達(dá)標(biāo)檢測練習(xí),將整堂課的內(nèi)容進(jìn)行整理和概括,對易混淆的概念加以比較,對本節(jié)課重要知識點(diǎn)進(jìn)行檢測,及時掌握了學(xué)生的學(xué)情。
縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問題,教師只是加以引導(dǎo),以合作者的身份參與其中。學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的能力也會逐步得到提高。
倍數(shù)和因數(shù)教學(xué)反思3
這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運(yùn)用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因?yàn)樗麄円庾R到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識,找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動?用已有的經(jīng)驗(yàn)自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨(dú)立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實(shí)際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實(shí)現(xiàn)學(xué)生學(xué)習(xí)的主體地位。
學(xué)生在找一個數(shù)的.因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的。
倍數(shù)和因數(shù)教學(xué)反思4
一、教材與知識點(diǎn)的對比與區(qū)別。
1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時也進(jìn)行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計上都獨(dú)具匠心!耙驍(shù)與倍數(shù)”的認(rèn)識與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過乘法算式來導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認(rèn)真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認(rèn)識不出現(xiàn)整除的`定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。
2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運(yùn)用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運(yùn)用實(shí)踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對與本知識點(diǎn)的概念是人為規(guī)定的一個范圍因此對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分?jǐn)?shù)無關(guān)與負(fù)數(shù)無關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。
2、在進(jìn)行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。
【篇三:因數(shù)和倍數(shù)2教學(xué)反思】
因數(shù)和倍數(shù)是五年級下冊第二單元的教學(xué)內(nèi)容,由于知識較為抽象,學(xué)生不易理解,因此我在教學(xué)時做到了以下幾點(diǎn):
(1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。
今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識倍數(shù)與因數(shù)的關(guān)系,
。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
。3)根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
。4)設(shè)計有趣游戲活動,擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的`學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂。
倍數(shù)和因數(shù)教學(xué)反思5
《倍數(shù)和因數(shù)》是我們工作室四月份研究的一個課例,我們是先抽簽上二十分鐘的課堂教學(xué),再進(jìn)行研討,我們研究了每一部分的處理方法,同時,為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環(huán)節(jié),嘗試找到更加恰當(dāng)?shù)奶幚矸椒。那次研究之后我們工作室的每一位成員都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動中上了這節(jié)課,這次上課的是我,由于事先準(zhǔn)備的不夠充分課堂中發(fā)現(xiàn)了很多的問題,有上次研討過還需要改進(jìn)的問題,也有這次上課出現(xiàn)的新問題。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計,下面我來具體的說一說。
1、情境導(dǎo)入。本節(jié)課的內(nèi)容是《倍數(shù)和因數(shù)》為了讓學(xué)生更清楚地感受倍數(shù)和因數(shù)的依存關(guān)系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學(xué)生的例子。但這兩個例子對于本課的教學(xué)或許沒有太多的意義,好像不能讓學(xué)生明確感受出倍數(shù)的'因數(shù)的依存關(guān)系,所以我們可以把這一部分的內(nèi)容去掉,直接進(jìn)入課堂,讓學(xué)生進(jìn)行操作活動。
2、倍數(shù)和因數(shù)的意義。本課是想通過用12個完全相同的正方形拼成長方形的活動來讓學(xué)生在活動中初步感知倍數(shù)和因數(shù)的關(guān)系,再用具體的例子向?qū)W生說明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學(xué)生進(jìn)行操作,兩人小組活動,試著擺一擺,看看有沒有不同的擺法,在交流的時候讓學(xué)生說說自己的擺法,每排擺了幾個,擺了幾排,怎樣用乘法算式表示,再讓學(xué)生有序地說一說,為后面找一個數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說明倍數(shù)和因數(shù)的含義,用我們過去學(xué)習(xí)的乘法算式中的乘數(shù)乘乘數(shù)等于積過渡到倍數(shù)和因數(shù),再讓學(xué)生說一說其他兩道乘法算式。說完后再給學(xué)生一個提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時候讓學(xué)生自己寫一個算式,并說一說。
3、找一個數(shù)的倍數(shù)。這應(yīng)該時本節(jié)課的重難點(diǎn)內(nèi)容,在教學(xué)中一定要讓學(xué)生說一說找倍數(shù)的方法,而我在上課的時候把這一個重要的部分一帶而過,可以看出來很大一部分學(xué)生是沒有掌握找倍數(shù)的方法的。所以我在思考這一難點(diǎn)該如何突破?是不是應(yīng)讓學(xué)生先獨(dú)立想一想辦法,多說一說,給學(xué)生足夠多的時間讓學(xué)生去說自己用來找倍數(shù)的方法,這樣多種方法出來以后,我們可以對方法進(jìn)行優(yōu)化,選擇快速簡單的找法。在教學(xué)的時候,同時注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識,可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時候也會選擇剛才優(yōu)化過的好的方法進(jìn)行練習(xí)。
4、找倍數(shù)的特征。在完成找一個數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學(xué)生觀察三個倍數(shù),再說一說自己的發(fā)現(xiàn),放手讓學(xué)生去找或許學(xué)生能夠很快的找出來,但如果給好具體的問題,可能會限制一些學(xué)生的思考。如果學(xué)生在觀察時沒有發(fā)現(xiàn)我們所想要總結(jié)的特征,可以對學(xué)生進(jìn)行適當(dāng)?shù)奶崾,讓學(xué)生觀察一個數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個數(shù)等。先給學(xué)生足夠的時間讓學(xué)生自己去找,我們要相信他們藕能力做到。
5、課堂常規(guī)的問題。在上課之前我應(yīng)先確定好小組的具體分配,以免學(xué)生在小組活動中找不到合作的對象,如果上課之前具體的分好了,小組討論的效率會高很多。在上課時,我要少說,把更多說的機(jī)會留給學(xué)生,讓學(xué)生去表達(dá)自己的想法,同時還要相信學(xué)生,不要怕學(xué)生不會,而給出很多的條條框框,限制了學(xué)生的思維發(fā)展。
倍數(shù)和因數(shù)教學(xué)反思6
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點(diǎn):
一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。
教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不一樣的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的好處。這部分資料學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的資料。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、決定,需要一個長期的消化理解的過程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,
二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的好處。
倍數(shù)和因數(shù)的好處是本單元的重要知識,其他資料的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。之后教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時再讓學(xué)生完整的.說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的好處是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,之后練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點(diǎn)個性的兩句。
整個過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的好處。
三、由點(diǎn)及面,巧架平臺,讓學(xué)生在師生互動中建立完整的數(shù)學(xué)模型。
找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的好處,也為研究倍數(shù)的特征及好處作準(zhǔn)備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點(diǎn)是幫忙學(xué)生建立相應(yīng)的數(shù)學(xué)模型。
探索求一個數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),之后組織學(xué)生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
教學(xué)4的倍數(shù)時,學(xué)生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,之后向兩頭延伸:有比4更小的嗎?之后4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。
這樣搭建了有效的平臺、構(gòu)成了師生互動生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。
倍數(shù)和因數(shù)教學(xué)反思7
反思教學(xué)效果總結(jié)了的原因有以下幾點(diǎn):
。ㄒ唬┧財(shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素數(shù),但其實(shí)是合數(shù)。這些數(shù)經(jīng)常被學(xué)生誤認(rèn)為是素數(shù)而導(dǎo)致錯誤,原因是這些學(xué)生就簡單的看看,而不愿意用2、3、5等素數(shù)去嘗試,努力尋找是不是有第3個因數(shù)存在。
。ǘ┮馑枷嗤Z句表述不同時,有的學(xué)生就不能正確理解。如:在上面的數(shù)只有兩個因數(shù)的數(shù)有哪些?其實(shí)這道題目就是問在上面的數(shù)中素數(shù)有哪些。
。ㄈ┯械膶W(xué)生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個學(xué)生先找到1的倍數(shù),然后根據(jù)數(shù)的特點(diǎn)作出正確的判斷。但有的學(xué)生看到1是個奇數(shù),然后就簡單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個數(shù)的倍數(shù)一定比它的因數(shù)大。如果學(xué)生找一個數(shù),看看它的最小倍數(shù)是哪個?找找它的最大因數(shù)是哪個?這樣不難找到正確的答案。但是有的倍數(shù)簡單地被題目的意思誤導(dǎo),加上平時的練習(xí)中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學(xué)生容易誤判。
教學(xué)中,我和學(xué)生有時太滿足于平時練習(xí)的結(jié)果,而缺少讓學(xué)生進(jìn)行數(shù)學(xué)思考和表達(dá)能力的過程訓(xùn)練?磥碓谝院蟮慕虒W(xué)中,我要繼續(xù)改變教學(xué)觀念,要高度尊重學(xué)生,依靠學(xué)生,把以往教學(xué)中主要依靠教師轉(zhuǎn)變?yōu)橐揽繉W(xué)生。
建議
1、在新知教學(xué)中,注重引導(dǎo)學(xué)生進(jìn)行探究。在本單元中找一個數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過學(xué)生的探究找到方法,成了教學(xué)的亮點(diǎn)。如“找36的因數(shù)” ,找一個數(shù)的因數(shù)是本課的難點(diǎn)。應(yīng)該說,找出36的幾個因數(shù)并不難,難就難在找出36的所有因數(shù)。教學(xué)中,建議教師不要把方法簡單地告訴學(xué)生,而是讓學(xué)生獨(dú)立去探究,獨(dú)立寫出36的所有因數(shù),在學(xué)生反饋的基礎(chǔ)上教師再引導(dǎo)學(xué)生對有序和無序作比較,學(xué)生才能在比較、交流中感悟有序思考的必要性和科學(xué)性。交流的過程正是學(xué)生相互補(bǔ)充、相互接納的過程,是對學(xué)習(xí)內(nèi)容進(jìn)行深加工和重組知識的過程,是學(xué)生的認(rèn)知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識的過程,又是培養(yǎng)學(xué)生良好思維品質(zhì)的過程。給學(xué)生獨(dú)立思考的空間,提出了各自的解法或見解,是思維獨(dú)創(chuàng)性的培養(yǎng);引導(dǎo)學(xué)生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運(yùn)用除法算式的抽象思維,或乘除法口訣的綜合運(yùn)用等,在感受解法多樣性中,培養(yǎng)了學(xué)生思維的靈活性。
2、寓教于樂,游戲中進(jìn)行相應(yīng)的鞏固練習(xí)。本節(jié)課是一節(jié)概念課,內(nèi)容比較枯燥,課本上的練習(xí)形式也比較單一,所以在認(rèn)識倍數(shù)和因數(shù)后,應(yīng)安排有趣味的游戲,比如數(shù)字轉(zhuǎn)盤游戲,讓學(xué)生看轉(zhuǎn)盤說指針停止時,內(nèi)圈的數(shù)與外圈的數(shù)的關(guān)系,進(jìn)一步認(rèn)識倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的.關(guān)系。在學(xué)會找倍數(shù)和因數(shù)之后也可設(shè)計游戲,如:“猜猜一位老師的電話號碼”,在一個八位數(shù)的號碼中已知其中四位,根據(jù)有關(guān)倍因數(shù)關(guān)系的問題請學(xué)生找出未知的四位號碼,以提高學(xué)生學(xué)習(xí)的積極性,稍有難度的練習(xí)給學(xué)有余力的學(xué)生一個證明自己能力的機(jī)會,讓學(xué)生在數(shù)學(xué)活動中體驗(yàn)到數(shù)學(xué)學(xué)習(xí)的趣味性和挑戰(zhàn)性,學(xué)生運(yùn)用所學(xué)知識解決問題,體會到了學(xué)習(xí)新知識后的成就感。
3、教師要注重評價的導(dǎo)向作用,讓學(xué)生在評價中成長。在第一課時學(xué)生交流12的因數(shù)時,教師展示了三位同學(xué)的作業(yè):第一種是無序的,第二種是從小到大有序的,第三種是一對一對有序的。接著老師讓第一種方法的學(xué)生說說自己的想法,并讓其他同學(xué)評論,此時大多數(shù)學(xué)生的評價都認(rèn)為不好,找得缺漏、無序,這時其實(shí)作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導(dǎo)評價,學(xué)生自然而然地意識到要先看別人的優(yōu)點(diǎn),再看別人的缺點(diǎn),也給了剛才那位學(xué)生一個心理上的安慰,使他能更積極地投入到學(xué)習(xí)當(dāng)中去。
倍數(shù)和因數(shù)教學(xué)反思8
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的'人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對于同學(xué)來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義動身,而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但實(shí)質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1。5是0。3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1。5是0。3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),協(xié)助小朋友們認(rèn)真理解辨析,所以同學(xué)一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
倍數(shù)和因數(shù)教學(xué)反思9
因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識了乘法各部分名稱,對“倍”葉有了初步的認(rèn)識,從而本課由此入手,讓學(xué)生由熟悉的知識經(jīng)驗(yàn)開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的`知識結(jié)構(gòu),體會到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。
在探索找一個數(shù)的因數(shù)的方法時,為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動),2、9(閃動),3、6(閃動)學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學(xué)生難以真正理解的地方。
本課中還要注意到的就是學(xué)生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學(xué)生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時學(xué)生還不知道這些數(shù)的概念,但這時給學(xué)生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。
倍數(shù)和因數(shù)教學(xué)反思10
《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5!胰枂枌W(xué)生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“煩”,“很煩”,“太麻煩了”。
在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:
。1)兩個數(shù)是倍數(shù)關(guān)系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的一個數(shù);
(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個概念學(xué)生沒有學(xué)到):
①兩個不同的素數(shù);
、趦蓚連續(xù)的自然數(shù);
③1和任何自然數(shù)。
另外,我又結(jié)合教材后面的“你知道嗎?”,指導(dǎo)了一下用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的`方法。在完成練習(xí)時,讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡。
想來想去,還是真得很懷念舊教材上的“短除法”。
倍數(shù)和因數(shù)教學(xué)反思11
通過今天的學(xué)習(xí),你有什么收獲?
課后作業(yè) :課后自已或與同學(xué)合作制作一個含有因數(shù)和倍數(shù)知識的轉(zhuǎn)盤。
教后反思:
40分鐘的時間一閃而過,輕松愉悅的課堂氣氛,讓學(xué)生的`學(xué)習(xí)情緒空前高漲,學(xué)生的學(xué)習(xí)熱情,學(xué)習(xí)過程中數(shù)學(xué)思維的提升,都在這短短的時間內(nèi)讓我感覺無盡的驚喜。
課堂導(dǎo)入,親切,有效,讓學(xué)生先在腦海中留下“關(guān)系”這種印象,學(xué)生通過自己閱讀明白誰是誰的因數(shù),誰是誰的倍數(shù),然后通過試一試、練習(xí)、特別是(8是倍數(shù),4是因數(shù)。…… ( ))的辨析,讓學(xué)生明白:在說倍數(shù)(或因數(shù))時,必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨(dú)說誰是倍數(shù)(或因數(shù))。
因數(shù)和倍數(shù)不能單獨(dú)存在。
通過尋找一個數(shù)的因數(shù),和一個數(shù)的倍數(shù),讓學(xué)生通過多個實(shí)例找到規(guī)律。
在教學(xué)中由于過分依賴課件,致使有的環(huán)節(jié)沒有深入,沒有給學(xué)生時間進(jìn)行
倍數(shù)和因數(shù)教學(xué)反思12
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點(diǎn):
一、 操作實(shí)踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先根據(jù)一道應(yīng)用題,通過對學(xué)生隊(duì)伍的理解讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的`揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。
倍數(shù)和因數(shù)教學(xué)反思13
1倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,在這之前學(xué)生還沒有學(xué)習(xí)小數(shù)乘除法,只接觸過整數(shù)乘除法,因此教材通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。
2要求學(xué)生用乘法算式表示自己的長方形的不同擺法,幫助學(xué)生建立起乘法意義的.表象,為后面利用乘法找因數(shù)和倍數(shù)埋下伏筆。
3重視說的訓(xùn)練,要求具體明確。“誰是誰的倍數(shù),誰是誰的因數(shù)”當(dāng)學(xué)生說到12*1=12時,感到有些拗口,教師即時鼓勵,體現(xiàn)了數(shù)學(xué)的人文精神和不放過任何細(xì)節(jié)的作風(fēng)。
4如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。
5練習(xí)形式活潑多樣,即顛覆傳統(tǒng)又扎實(shí)訓(xùn)練。
倍數(shù)和因數(shù)教學(xué)反思14
《因數(shù)和倍數(shù)》是一節(jié)概念課。教學(xué)時我首先以拼圖比賽為素材,讓學(xué)生動手操作快速把12個小正方形擺出一個長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實(shí)際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因?yàn)?5的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的.形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
最后引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點(diǎn)時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
倍數(shù)和因數(shù)教學(xué)反思15
簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時,對于求一個數(shù)的因數(shù),及理解一個數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個數(shù)的因數(shù)的個數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時,對求一個數(shù)的倍數(shù)及理解一個數(shù)的倍數(shù)中最小的是它本身,沒有最大的`倍數(shù)也認(rèn)為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學(xué)生判斷為對。練習(xí)中:18是的倍數(shù),個別學(xué)生選擇了18、36、54……。針對這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個問題:
1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。
2、觀察比較,會打消列問題:一個數(shù)的因數(shù)和它本身的關(guān)系,
3、為什么一個數(shù)的因數(shù)的個數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。
通過對這幾個問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個數(shù)的因數(shù)和倍數(shù)
【倍數(shù)和因數(shù)教學(xué)反思】相關(guān)文章:
《因數(shù)和倍數(shù)》教學(xué)反思02-06
《倍數(shù)和因數(shù)》教學(xué)反思04-11
因數(shù)和倍數(shù)教學(xué)反思15篇01-29
因數(shù)和倍數(shù)教學(xué)反思(15篇)02-07