- 相關(guān)推薦
從算式到方程教學反思
作為一位剛到崗的人民教師,我們的工作之一就是教學,通過教學反思可以很好地改正講課缺點,優(yōu)秀的教學反思都具備一些什么特點呢?下面是小編整理的從算式到方程教學反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
從算式到方程教學反思1
本節(jié)課的重難點都是從實際于問題中尋找相等關(guān)系,從而列方程解決實際問題,為了更好地突出重點、突破點,在教學過程中著力體現(xiàn)以下幾方面的特點:
1、突出問題的應(yīng)用意識。
首先用一個學生感興趣的突出問題引入課題,然后運用算術(shù)方法給出答案,在各環(huán)節(jié)的安排上都設(shè)計成一個個問題,引導學生能圍繞問題開展思考、討論,進行學習。
2、體現(xiàn)學生的主體意識。
始終把學生放在主體地位,讓學生通過對列算式與列方程的比較,分別歸納出它們的特點,從感受到從算術(shù)方法到代數(shù)方法是數(shù)學的進步。通過學生之間的合作與交流,得了出問題的不同解答方法,讓學生對這節(jié)課的學習內(nèi)容、方法、注意點等進行歸納。
3、體現(xiàn)學生思維的層次性。
首先引導學生嘗試用算術(shù)方法解決問題,然后逐步引導學生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程。在尋找相等關(guān)系,設(shè)未知數(shù)及練習和作業(yè)的布置等環(huán)節(jié)中,都注意了學生思維的層次性。
4、滲透建模的`思想。
把實際問題中的數(shù)量關(guān)系用方程的形式表示出來,就是建立一種數(shù)學模型,有意識地按設(shè)未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出數(shù)學模型的能力。
從當堂練習和作業(yè)情況來看,收到了很好的教學效果,絕大部分學生都能根據(jù)實際問題準確地建立數(shù)學模型,但也有少數(shù)幾個學生存在一定的問題,不能很好地列出方程。
從算式到方程教學反思2
這節(jié)課的內(nèi)容是一元一次方程第一課時。課后,我對本節(jié)課從四方面進行了如下反思:
一:對選擇引例的反思
在小學學生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學生認識到方程是更方便、更有力的數(shù)學工具,又要讓學生體驗到從算術(shù)方法到代數(shù)方法是數(shù)學的進步,這些目標的實現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學生很少有利用方程解應(yīng)用題的經(jīng)歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術(shù)到方程的進步呢?幾乎翻閱了所有的有關(guān)資料,無獨有偶,在新課標教案126頁的一道數(shù)學名題“啊哈,它的全部, 它的一半,其和等于19。”讓我眼前一亮,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數(shù)學組經(jīng)驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現(xiàn)出從算術(shù)到方程的進步,因為題很簡單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優(yōu)越性,后面學習中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創(chuàng)新又能激發(fā)學生的興趣,既符合學生的`已有經(jīng)驗和知識水平,又符合學生的認知規(guī)律。
二:對選題的反思
我在備課中【活動3】最初選用的題是:
。1)21+2 =23(2)5x+4(3)6x+2=8 (4)9x+2>3(5)6y+2y=4
修改后的題是:
判斷下列各式是方程的有:
。1) (2) (3) (4) (5)
考慮到學生初對方程概念的研究,不在數(shù)字上人為的設(shè)置障礙,因為是否是方程與數(shù)字的大小根本無關(guān),于是把數(shù)字全部統(tǒng)一成了6、2、8三個數(shù),利于學生從未知數(shù)和等號的角度進一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強,容易分散學生對概念本質(zhì)的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質(zhì)。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質(zhì)的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個數(shù)、未知數(shù)的次數(shù)等均無關(guān)。
三:對課堂實踐的反思
本節(jié)課的設(shè)計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結(jié)。
當環(huán)節(jié)進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發(fā)現(xiàn)學生在黑板上寫的全部都是未知數(shù)在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現(xiàn)的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數(shù)的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數(shù)的方程來彌補設(shè)計上的不足時,我忽然發(fā)現(xiàn)最后一排的一位男生已經(jīng)高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的問題呢?”這時我看到后面幾位學生已經(jīng)高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數(shù)和等號就OK了,與未知數(shù)的位置無關(guān)!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜!
四:教后整體反思
成功之處:
1.引例、練習題的選擇都很恰當。
2.思路清晰,重點突出,注意到了學生的自主探索,節(jié)奏把握較好。
3.數(shù)學文化的滲透比較自然。
4.“寫一個或幾個一元一次方程”此環(huán)節(jié)的設(shè)計體現(xiàn)了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。
5.語言簡練,教態(tài)大方,師生互動比較熱烈,充分調(diào)動了學生的積極性。
6.板書設(shè)計較為合理。本節(jié)課的主要內(nèi)容都以提煉的方式呈現(xiàn)出來。
不足之處:
1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。
2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。
3.授課語言仍需加強錘煉。
這節(jié)課的準備和每個環(huán)節(jié)的設(shè)計我頗費了一些心思,上完課之后總的感覺是達到了我預(yù)期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!
從算式到方程教學反思3
一、從課堂反思
1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數(shù)學“建!蹦芰Φ呐囵B(yǎng)。為后面學習打下基礎(chǔ)。
3、在課堂的第二個環(huán)節(jié)中,通過實際問題的引入,讓學生動起腦來,階梯型問題的設(shè)置使得一些后進生也投入到課堂中來,體現(xiàn)了差異性的教學。在學生慢慢列出方程的同時其實也培養(yǎng)了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優(yōu)點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發(fā)學生參與數(shù)學的.興趣,在列完方程的最后讓學生歸納出列方程解應(yīng)用題的基本步驟。使學生加深對知識的掌握也培養(yǎng)了他們的語言組織能力以及學會標準的數(shù)學用語。
二、從教學方法反思
本節(jié)課本著 “尊重差異”為基礎(chǔ),先“引導發(fā)現(xiàn)”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應(yīng)用題的基礎(chǔ),抓住基礎(chǔ)知識再去發(fā)展他們的邏輯思維能力對后進生是十分重要的。
三、從學生反饋反思
這堂課學生能積極思考,認真學習,課后作業(yè)都能及時完成。作業(yè)質(zhì)量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應(yīng)用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數(shù)量關(guān)系去列方程。
【從算式到方程教學反思】相關(guān)文章:
從算式到方程(1)01-23
從問題到方程教學反思03-21
有趣的算式教學反思10-27
《有趣的算式》教學反思04-01
《方程》教學反思10-21
方程教學反思03-28
小學方程教學反思04-09
直線方程教學反思04-10
式與方程教學反思04-07