- 圓的標準方程教學(xué)反思 推薦度:
- 相關(guān)推薦
圓的標準方程教學(xué)反思3篇
身為一名到崗不久的老師,課堂教學(xué)是我們的工作之一,對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,那么寫教學(xué)反思需要注意哪些問題呢?下面是小編為大家整理的圓的標準方程教學(xué)反思,僅供參考,希望能夠幫助到大家。
圓的標準方程教學(xué)反思1
本節(jié)課的教學(xué)設(shè)計,通過適當?shù)膭?chuàng)設(shè)情境,調(diào)動學(xué)生的學(xué)習(xí)興趣,然后以問題做鏈,環(huán)環(huán)相扣,運用前段時間學(xué)習(xí)的求曲線的方法引導(dǎo)學(xué)生探索方程,使學(xué)生的探究活動貫穿始終。從圓的標準方程的推導(dǎo)到標準方程的求解都是在問題的指引下,通過我的`適度引導(dǎo)、側(cè)面幫助、不斷肯定,由學(xué)生探究完成并走向成功。在內(nèi)容上,有如下感悟:
1、圓是最簡單的曲線。本節(jié)教材安排在學(xué)習(xí)了曲線方程概念和求曲線方程之后,學(xué)習(xí)三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學(xué)習(xí)做好準備。同時,有關(guān)圓的問題,特別是直線與圓的位置關(guān)系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法。因此,教學(xué)中應(yīng)加強練習(xí),使學(xué)生確實掌握這一單元的知識和方法。
2、在解決有關(guān)圓的問題過程中多次用到配方法、待定系數(shù)法等思想方法,教學(xué)中應(yīng)多總結(jié)。
3、解決有關(guān)圓的問題,要經(jīng)常用到一元二次方程的理論、平面幾何知識和前面學(xué)過的解析幾何的基本知識,教師在教學(xué)中要注意多復(fù)習(xí)、多運用,培養(yǎng)學(xué)生運算能力和簡化運算過程的意識。
4、有關(guān)圓的內(nèi)容非常豐富,有很多有價值的問題,建議適當選擇一些內(nèi)容供學(xué)生研究。例如:由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題,類似的還有圓系方程等問題。
5、應(yīng)該重視激發(fā)學(xué)生的求知欲。教學(xué)圓的認識時,注重給學(xué)生創(chuàng)設(shè)思維空間,注意引導(dǎo)學(xué)生積極體驗,自己產(chǎn)生問題意識,自己去探索、嘗試、解決、總結(jié),從而主動獲取知識。
圓的標準方程教學(xué)反思2
圓的標準方程,這節(jié)內(nèi)容我安排了兩節(jié)課的時間,這節(jié)課主要是圓的標準方程的推導(dǎo)和一些簡單的運用。在平面解析幾何中,我認為這節(jié)內(nèi)容很重要,因為它的研究方法為以后學(xué)習(xí)圓錐曲線提供了一個基礎(chǔ)模式,如果學(xué)生掌握得好,后面的學(xué)習(xí)會輕松許多。
由于我所面對的學(xué)生初中數(shù)學(xué)基礎(chǔ)不是很好,所以提前復(fù)習(xí)了舊知識,之后我引入了生活中的一個常見問題引發(fā)學(xué)生的疑問,產(chǎn)生認知沖突形成學(xué)習(xí)的氛圍,進而提高學(xué)生學(xué)習(xí)本節(jié)內(nèi)容的興趣。
圓的標準方程是求曲線方程的一個具體表現(xiàn),但學(xué)生對圓的標準方程還是很陌生,難以將圓與圓的標準方程緊密聯(lián)系起來;诖,我想通過學(xué)生的切身體驗;來發(fā)現(xiàn)圓的決定要素,讓學(xué)生明確一個圓對應(yīng)一個方程,在此基礎(chǔ)上借助求曲線方程的基本步驟,由學(xué)生自主探究推導(dǎo)出以(2,3)為圓心,2為半徑的圓的標準方程,再由特殊到一般,利用化歸的思想歸納出以(a,b)為圓心,r為半徑的圓心的標準方程。并引導(dǎo)學(xué)生找出方程的特征,以幫助學(xué)生理解和記憶,及時掌握。
例題教學(xué)的設(shè)計,還是緊密圍繞圓的標準方程這一目標展開,主要加深對圓的標準方程的理解及一些簡單的應(yīng)用。例題安排不多,但變式較多,變式的設(shè)計由特殊到一般,由簡到繁,由淺入深,層層入深,讓學(xué)生的思維得以提高,比較符合學(xué)生的認知規(guī)律,這樣學(xué)生接受起來比較容易。
課堂練習(xí),是對本節(jié)課目標落實情況的檢測,讓學(xué)生明確本節(jié)課應(yīng)該到達什么樣的目標,題不多,很基礎(chǔ),主要是激發(fā)學(xué)生的興趣和增強學(xué)習(xí)的自信。
整個教學(xué)設(shè)計,我的希望是以學(xué)生自主學(xué)習(xí)為主,所以很多問題都由學(xué)生獨立思考或討論完成,教師僅僅是一個引路人,讓學(xué)生的主體地位得到充分體現(xiàn),注重學(xué)生思維的`形成過程,并將數(shù)學(xué)思想方法滲透到教學(xué)中。
總的來說,這節(jié)課幾乎是按自己的教學(xué)設(shè)計在進行,而且順利地完成了。應(yīng)該說在學(xué)生動手,雙基落實方面還不錯,學(xué)生的活動也比較充分,教師僅是及時的引導(dǎo)和
點評,讓學(xué)生的主體性得到了較為充分的體現(xiàn)。另外,在教學(xué)中不斷的滲透數(shù)學(xué)思想和方法,讓學(xué)生思維得到提升。
當然,這節(jié)課還有很多不足的地方。比如:在變式練習(xí)時,未寫出切線的方程,缺乏解題和板書的完整性;另外,后面的課堂練習(xí)也沒有得到及時的反饋,這是較遺憾的。
從這堂課的教學(xué)設(shè)計和教學(xué)的過程中,我得到了鍛煉和提高,這對我在今后的教學(xué)有很大的幫助。
圓的標準方程教學(xué)反思3
今天開一節(jié)新課,課題是《圓的標準方程》。教學(xué)上,我用了奧運五環(huán)旗來引入,通過五環(huán)的圓形狀,讓學(xué)生舉例生活中的圓,借以活躍課堂的氣氛并提出本節(jié)研究的課題。接下來,設(shè)計兩個問題作為課堂的串聯(lián)。問題一:如何作出一個圓?先讓學(xué)生上來畫圓,再結(jié)合畫圓的呈現(xiàn)的情境,引導(dǎo)學(xué)生回顧圓的定義;問題二:如果圓心為C(a,b),半徑為r,如何求圓的方程?教師根據(jù)學(xué)生作出的圓,添上坐標軸,讓學(xué)生根據(jù)求曲線方程的步驟推導(dǎo)圓的方程。兩個問題一解決,圓的標準方程也就浮出水面了。
結(jié)合例題,教師對圓的標準方程的結(jié)構(gòu)作了進一步說明,特別強調(diào)了圓心在原點的情況,然后,就進入了練習(xí)鞏固階段。本節(jié)課設(shè)置了三個題組,題組一(4題):已知圓的標準方程,口答圓的圓心坐標和半徑;題組二(4題):已知圓的圓心坐標和半徑,寫出圓的標準方程;通過題組一、二,教師引導(dǎo)學(xué)生強化了確定圓方程的關(guān)鍵是明確圓心坐標和圓半徑,如果條件不成熟,則需根據(jù)條件先求出圓心坐標和半徑。于是,給出題組三,都是要求學(xué)生先作出草圖并求圓的標準方程,條件分別如下:(1)已知圓心和過圓上一點;(2)以A、B兩點為圓的直徑;(3)已知圓心,且圓與一直線相切;(4)已知圓過兩點和半徑r。
四道題目,讓學(xué)生先作簡單的思考,然后叫四位學(xué)生分別上來板演。這樣的安排,也是經(jīng)過深思熟慮的`,但放手讓學(xué)生做之后,結(jié)果卻不盡如人意。尤其是3、4兩題,兩位學(xué)生耗費了近15分鐘時間,雖然第4題得到了解決,但離下課僅剩下2分鐘。結(jié)果只能對學(xué)生的板演作匆匆忙忙的說明,未能對解題思路作進一步的延伸,是為本課一遺憾。
在課后,幾個同事進行了交流,認為題組三的給出太過突然,應(yīng)該先設(shè)置一個類似的例題作緩沖,而且題4在本節(jié)課顯得難度過高,應(yīng)當放在下節(jié)課再講。思索再三,確實同事的見解很到位,本節(jié)課還是題量設(shè)置過大了一些,在教學(xué)中,題組三應(yīng)該一題一題地給出,然后盡可能詳細地引導(dǎo)學(xué)生對解題思路和過程進行分析,講多少題,應(yīng)根據(jù)課堂的情況進行調(diào)整。如此,彈性會更大,課堂也會進行得更從容。
看來,如何放手給學(xué)生?放手到什么程度?總有很多讓人品味的地方。
【圓的標準方程教學(xué)反思】相關(guān)文章:
圓的標準方程教學(xué)反思03-28
圓的標準方程01-23
圓的方程01-23
圓的方程教案01-23
方程教學(xué)反思03-28
《方程》教學(xué)反思10-21
方程的意義教學(xué)反思02-10
直線的方程教學(xué)反思03-27
解方程的教學(xué)反思02-26