亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級數(shù)學(xué)教案>數(shù)學(xué)教案-等腰三角形的判定

            數(shù)學(xué)教案-等腰三角形的判定

            時間:2022-08-16 23:54:01 八年級數(shù)學(xué)教案 我要投稿
            • 相關(guān)推薦

            數(shù)學(xué)教案-等腰三角形的判定

            重點與難點分析:

              本節(jié)內(nèi)容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

            數(shù)學(xué)教案-等腰三角形的判定

              本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,經(jīng);煜,幫助學(xué)生認識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字敘述題也是難點之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識點的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

              教法建議:

              本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:

             。1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

              學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。

              (2)采用“類比”的學(xué)習(xí)方法,獲取知識。

              由性質(zhì)定理的學(xué)習(xí),我們得到了幾個推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c撥引導(dǎo)。

             。3)總結(jié),形成知識結(jié)構(gòu)

              為了使學(xué)生對本節(jié)課有一個完整的認識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個三角形是等邊三角形?

            一.教學(xué)目標(biāo)

              1.使學(xué)生掌握等腰三角形的判定定理及其推論;

              2.掌握等腰三角形判定定理的運用;

              3.通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的能力;

              4.通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;

              5.通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.

              二.教學(xué)重點等腰三角形的判定定理

              三.教學(xué)難點性質(zhì)與判定的區(qū)別

              四.教學(xué)用具:直尺,微機

              五.教學(xué)方法:以學(xué)生為主體的討論探索法

              六.教學(xué)過程(adivasplayground.com)

              1、新課背景知識復(fù)習(xí)

             。1)請同學(xué)們說出互逆命題和互逆定理的概念

              估計學(xué)生能用自己的語言說出,這里重點復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。

              (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?

              啟發(fā)學(xué)生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

              1.等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

              (簡稱“等角對等邊”).

              由學(xué)生說出已知、求證,使學(xué)生進一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法.

              已知:如圖,△ABC中,∠B=∠C. 

              求證:AB=AC.

              教師可引導(dǎo)學(xué)生分析:

              聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

              注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

             。2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

             。3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

              2.推論1:三個角都相等的三角形是等邊三角形.

              推論2:有一個角等于60°的等腰三角形是等邊三角形.

              要讓學(xué)生自己推證這兩條推論.

              小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

              證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

              3.應(yīng)用舉例

              例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

              分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時,常?紤]應(yīng)用外角的兩個特性①它與相鄰的內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

              已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

              求證:AB=AC.

              證明:(略)由學(xué)生板演即可.

              補充例題:(投影展示)

              1.已知:如圖,AB=AD,∠B=∠D.

              求證:CB=CD.

              分析:解具體問題時要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

              證明:連結(jié)BD,在 中, (已知)

                (等邊對等角)

                (已知)

                即

                (等教對等邊)

              小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.

              2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

              分析:對于三個線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

              證明: DE//BC(已知)

               

                ,  

                BE=DE,同理DF=CF.

                EF=DE-DF

                EF=BE-CF

              小結(jié):

              (1)等腰三角形判定定理及推論.

              (2)等腰三角形和等邊三角形的證法.

              七.練習(xí)

              教材 P.75中1、2、3.

              八.作業(yè)

              教材 P.83 中 1.1)、2)、3);2、3、4、5.


            【數(shù)學(xué)教案-等腰三角形的判定】相關(guān)文章:

            矩形的判定教學(xué)反思02-26

            七年級數(shù)學(xué)教案平行線的判定12-29

            平行線的判定教學(xué)反思03-20

            八年級等腰三角形數(shù)學(xué)教案12-30

            八年級《等腰三角形》數(shù)學(xué)教案01-05

            八年級數(shù)學(xué)教案:全等三角形的判定11-18

            矩形的判定教學(xué)反思范文(精選3篇)08-18

            八年級等腰三角形數(shù)學(xué)教案5篇12-31

            八年級等腰三角形數(shù)學(xué)教案(5篇)12-31

            八年級《等腰三角形》數(shù)學(xué)教案(通用10篇)09-28