亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

            八年級(jí)數(shù)學(xué)教案

            時(shí)間:2022-08-22 02:26:11 八年級(jí)數(shù)學(xué)教案 我要投稿

            精選八年級(jí)數(shù)學(xué)教案3篇

              作為一名為他人授業(yè)解惑的教育工作者,通常需要用到教案來(lái)輔助教學(xué),編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么應(yīng)當(dāng)如何寫教案呢?下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案3篇,僅供參考,希望能夠幫助到大家。

            精選八年級(jí)數(shù)學(xué)教案3篇

            八年級(jí)數(shù)學(xué)教案 篇1

              教學(xué)目標(biāo):

              1、掌握一次函數(shù)解析式的特點(diǎn)及意義

              2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

              3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

              教學(xué)重點(diǎn):

              1、 一次函數(shù)解析式特點(diǎn)

              2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

              教學(xué)難點(diǎn):

              1、一次函數(shù)與正比例函數(shù)關(guān)系

              2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

              教學(xué)過(guò)程:

              Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

              問(wèn)題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

              分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

              s=570-95t.

              說(shuō)明 找出問(wèn)題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

              問(wèn)題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開(kāi)始的月份之間的函數(shù)關(guān)系式.

              分析 我們?cè)O(shè)從現(xiàn)在開(kāi)始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

              問(wèn)題3 以上問(wèn)題1和問(wèn)題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

              Ⅱ.導(dǎo)入新課

              上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

              y是x的正比例函數(shù)。

              例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

             、賧=x-6;②y=2x;③y=;④y=7-x x8

              A、①②③B、①③④ C、①②③④ D、②③④

              例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

              (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

              (2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);

              (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

              (4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

              (5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

              (6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

             。7)一棵樹(shù)現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹(shù)的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

              (2)L=2b+16,L是b的一次函數(shù).

              (3)y=150-5x,y是x的一次函數(shù).

              (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

             。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

              (6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

              (7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

              例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

              分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

              解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

              若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

              例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

              (1)寫出y與x之間的函數(shù)關(guān)系式;

              (2)y與x之間是什么函數(shù)關(guān)系;

              (3)求x=2.5時(shí),y的值.

              解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

              又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

              所以y=3(x-3)=3x-9.

              (2) y是x的一次函數(shù).

              (3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

              1. 2

              例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過(guò)B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).

              (1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

              (2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

              分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.

              (2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.

              解 (1) y=30-12x.(0≤x≤2.5)

              (2) y=12x-30.(2.5≤x≤6.5)

              例6 某油庫(kù)有一沒(méi)儲(chǔ)油的儲(chǔ)油罐,在開(kāi)始的8分鐘時(shí)間內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的'x取值范圍.

              分析 因?yàn)樵谥淮蜷_(kāi)進(jìn)油管的8分鐘內(nèi)、后又打開(kāi)進(jìn)油管和出油管的16分鐘和最后的只開(kāi)出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

              解 在第一階段:y=3x(0≤x≤8);

              在第二階段:y=16+x(8≤x≤16);

              在第三階段:y=-2x+88(24≤x≤44).

             、螅S堂練習(xí)

              根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

              2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不

              超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

              Ⅳ.課時(shí)小結(jié)

              1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

              2、能根據(jù)已知簡(jiǎn)單信息,寫出一次函數(shù)的表達(dá)式。

             、酰n后作業(yè)

              1、已知y-3與x成正比例,且x=2時(shí),y=7

              (1)寫出y與x之間的函數(shù)關(guān)系.

              (2)y與x之間是什么函數(shù)關(guān)系.

              (3)計(jì)算y=-4時(shí)x的值.

              2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

              3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

              4.今年植樹(shù)節(jié),同學(xué)們種的樹(shù)苗高約1.80米.據(jù)介紹,這種樹(shù)苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹(shù)高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹(shù)約有多高.

              5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

            八年級(jí)數(shù)學(xué)教案 篇2

              知識(shí)要點(diǎn)

              1、函數(shù)的概念:一般地,在某個(gè)變化過(guò)程中,有兩個(gè) 變量x和 y,如果給定一個(gè)x值,

              相應(yīng)地就確定了一個(gè)y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。

              2、一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時(shí),稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).

              3、正比例函數(shù)y=kx的性質(zhì)

              (1)、正比例函數(shù)y=kx的圖象都經(jīng)過(guò)

              原點(diǎn)(0,0),(1,k)兩點(diǎn)的一條直線;

              (2)、當(dāng)k0時(shí),圖象都經(jīng)過(guò)一、三象限;

              當(dāng)k0時(shí),圖象都經(jīng)過(guò)二、四象限

              (3)、當(dāng)k0時(shí),y隨x的增大而增大;

              當(dāng)k0時(shí),y隨x的增大而減小。

              4、一次函數(shù)y=kx+b的性質(zhì)

              (1)、經(jīng)過(guò)特殊點(diǎn):與x軸的交點(diǎn)坐標(biāo)是 ,

              與y軸的交點(diǎn)坐標(biāo)是 .

              (2)、當(dāng)k0時(shí),y隨x的增大而增大

              當(dāng)k0時(shí),y隨x的增大而減小

              (3)、k值相同,圖象是互相平行

              (4)、b值相同,圖象相交于同一點(diǎn)(0,b)

              (5)、影響圖象的兩個(gè)因素是k和b

             、賙的正負(fù)決定直線的方向

             、赽的正負(fù)決定y軸交點(diǎn)在原點(diǎn)上方或下方

              5.五種類型一次函數(shù)解析式的確定

              確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。

              (1)、根據(jù)直線的解析式和圖像上一個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式

              例1、若函數(shù)y=3x+b經(jīng)過(guò)點(diǎn)(2,-6),求函數(shù)的解析式。

              解:把點(diǎn)(2,-6)代入y=3x+b,得

              -6=32+b 解得:b=-12

              函數(shù)的解析式為:y=3x-12

              (2)、根據(jù)直線經(jīng)過(guò)兩個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式

              例2、直線y=kx+b的圖像經(jīng)過(guò)A(3,4)和點(diǎn)B(2,7),

              求函數(shù)的表達(dá)式。

              解:把點(diǎn)A(3,4)、點(diǎn)B(2,7)代入y=kx+b,得

              ,解得:

              函數(shù)的解析式為:y=-3x+13

              (3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式

              例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時(shí)間x

              (小時(shí))之間的關(guān)系.求油箱里所剩油y(升)與行駛時(shí)間x

              (小時(shí))之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。

              (4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式

              例4、如圖2,將直線 向上平移1個(gè)單位,得到一個(gè)一次

              函數(shù)的圖像,那么這個(gè)一次函數(shù)的解析式是 .

              解:直線 經(jīng)過(guò)點(diǎn)(0,0)、點(diǎn)(2,4),直線 向上平移1個(gè)單位

              后,這兩點(diǎn)變?yōu)?0,1)、(2,5),設(shè)這個(gè)一次函數(shù)的解析式為 y=kx+b,

              得 ,解得: ,函數(shù)的解析式為:y=2x+1

              (5)、根據(jù)直線的對(duì)稱性,確定函數(shù)的解析式

              例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對(duì)稱,求k、b的值。

              例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對(duì)稱,求k、b的值。

              例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點(diǎn)對(duì)稱,求k、b的值。

              經(jīng)典訓(xùn)練:

              訓(xùn)練1:

              1、已知梯形上底的長(zhǎng)為x,下底的長(zhǎng)是10,高是 6,梯形的面積y隨上底x的變化而變化。

              (1)梯形的面積y與上底的長(zhǎng)x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?

              (2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。

              訓(xùn)練2:

              1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

              一次函數(shù)有___ __;正比例函數(shù)有____________(填序號(hào)).

              2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )

              A.k1 B.k-1 C.k1 D.k為任意實(shí)數(shù).

              3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.

              訓(xùn)練3:

              1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.

              2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )

              A.m0 B.m0 C.m0 D.m0

              3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過(guò)的象限是____,它與x軸的交 點(diǎn)坐標(biāo)是____,與y軸的交點(diǎn)坐標(biāo)是____.

              4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過(guò)原點(diǎn),則k=_____;

              若y隨x的增大而增大,則k__________.

              5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )

              訓(xùn)練4:

              1、 正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(-3,5),寫出這正比例函數(shù)的解析式.

              2、已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,1)和(-1,-3).求此一次函數(shù)的解析式 .

              3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。

              4、已知一次函數(shù)y=kx+b,在x=0時(shí)的值為4,在x=-1時(shí)的值為-2,求這個(gè)一次函數(shù)的解析式。

              5、已知y-1與x成正比例,且 x=-2時(shí),y=-4.

              (1)求出y與x之間的函數(shù)關(guān)系式;

              (2)當(dāng)x=3時(shí),求y的值.

              一、填空題(每題2分,共26分)

              1、已知 是整數(shù),且一次函數(shù) 的圖象不過(guò)第二象限,則 為 .

              2、若直線 和直線 的交點(diǎn)坐標(biāo)為 ,則 .

              3、一次函數(shù) 和 的圖象與 軸分別相交于 點(diǎn)和 點(diǎn), 、 關(guān)于 軸對(duì)稱,則 .

              4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時(shí) , 時(shí), ,則當(dāng) 時(shí), .

              5、函數(shù) ,如果 ,那么 的取值范圍是 .

              6、一個(gè)長(zhǎng) ,寬 的矩形場(chǎng)地要擴(kuò)建成一個(gè)正方形場(chǎng)地,設(shè)長(zhǎng)增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).

              7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時(shí), 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .

              8、已知一次函數(shù) 和 的圖象交點(diǎn)的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .

              9、已知一次函數(shù) 的圖象經(jīng)過(guò)點(diǎn) ,且它與 軸的交點(diǎn)和直線 與 軸的交點(diǎn)關(guān)于 軸對(duì)稱,那么這個(gè)一次函數(shù)的解析式為 .

              10、一次函數(shù) 的圖象過(guò)點(diǎn) 和 兩點(diǎn),且 ,則 , 的取值范圍是 .

              11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時(shí), 是正比例函數(shù).

              12、 為 時(shí),直線 與直線 的交點(diǎn)在 軸上.

              13、已知直線 與直線 的交點(diǎn)在第三象限內(nèi),則 的取值范圍是 .

              二、選擇題(每題3分,共36分)

              14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )

              15、若直線 與 的.交點(diǎn)在 軸上,那么 等于( )

              A.4 B.-4 C. D.

              16、直線 經(jīng)過(guò)一、二、四象限,則直線 的圖象只能是圖4中的( )

              17、直線 如圖5,則下列條件正確的是( )

              18、直線 經(jīng)過(guò)點(diǎn) , ,則必有( )

              A.

              19、如果 , ,則直線 不通過(guò)( )

              A.第一象限 B.第二象限 C.第三象限 D.第四象限

              20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是

              A. B. C. D.都不對(duì)

              21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )

              圖6

              22、已知一次函數(shù) 與 的圖像都經(jīng)過(guò) ,且與 軸分別交于點(diǎn)B, ,則 的面積為( )

              A.4 B.5 C.6 D.7

              23、已知直線 與 軸的交點(diǎn)在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個(gè)數(shù)是( )

              A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

              24、已知 ,那么 的圖象一定不經(jīng)過(guò)( )

              A.第一象限 B.第二象限 C.第三象限 D.第四象限

              25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時(shí),甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達(dá)距A站22千米處.設(shè)甲從P處出發(fā) 小時(shí),距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )

              三、解答題(1~6題每題8分,7題10分,共58分)

              26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點(diǎn),直線 與 軸交于點(diǎn)D,四邊形OBCD(O是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)A的橫坐標(biāo)是 ,求這個(gè)一次函數(shù)解析式.

              27、一次函數(shù) ,當(dāng) 時(shí),函數(shù)圖象有何特征?請(qǐng)通過(guò)不同的取值得出結(jié)論?

              28、某油庫(kù)有一大型儲(chǔ)油罐,在開(kāi)始的8分鐘內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的油進(jìn)至24噸(原油罐沒(méi)儲(chǔ)油)后將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.

              (1)試分別寫出這一段時(shí)間內(nèi)油的儲(chǔ)油量Q(噸)與進(jìn)出油的時(shí)間t(分)的函數(shù)關(guān)系式.

              (2)在同一坐標(biāo)系中,畫(huà)出這三個(gè)函數(shù)的圖象.

              29、某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月不超過(guò)100度時(shí),按每度0.57元計(jì)費(fèi);每月用電超過(guò)100度時(shí),其中的100度按原標(biāo)準(zhǔn)收費(fèi);超過(guò)部分按每度0.50元計(jì)費(fèi).

              (1)設(shè)用電 度時(shí),應(yīng)交電費(fèi) 元,當(dāng) 100和 100時(shí),分別寫出 關(guān)于 的函數(shù)關(guān)系式.

              (2)小王家第一季度交納電費(fèi)情況如下:

              月份 一月份 二月份 三月份 合計(jì)

              交費(fèi)金額 76元 63元 45元6角 184元6角

              問(wèn)小王家第一季度共用電多少度?

              30、某地上年度電價(jià)為0.8元,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時(shí), =0.8.

              (1)求 與 之間的函數(shù)關(guān)系式;

              (2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門的收益將比上年度增加20%?[收益=用電量(實(shí)際電價(jià)-成本價(jià))]

              31、汽車從A站經(jīng)B站后勻速開(kāi)往C站,已知離開(kāi)B站9分時(shí),汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開(kāi)出時(shí)間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?

              32、甲乙兩個(gè)倉(cāng)庫(kù)要向A、B兩地運(yùn)送水泥,已知甲庫(kù)可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫(kù)到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄元/(噸、千米)表示每噸水泥運(yùn)送1千米所需人民幣)

              路程/千米 運(yùn)費(fèi)(元/噸、千米)

              甲庫(kù) 乙?guī)?甲庫(kù) 乙?guī)?/p>

              A地 20 15 12 12

              B地 25 20 10 8

              (1)設(shè)甲庫(kù)運(yùn)往A地水泥 噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫(huà)出它的圖象(草圖).

              (2)當(dāng)甲、乙兩庫(kù)各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?

            八年級(jí)數(shù)學(xué)教案 篇3

              教學(xué)目標(biāo):

              1. 掌握三角形內(nèi)角和定理及其推論;

              2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;

              3.通過(guò)對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問(wèn)題。

              4.通過(guò)三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)

              5. 通過(guò)對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。

              教學(xué)重點(diǎn):

              三角形內(nèi)角和定理及其推論。

              教學(xué)難點(diǎn):

              三角形內(nèi)角和定理的證明

              教學(xué)用具:

              直尺、微機(jī)

              教學(xué)方法:

              互動(dòng)式,談話法

              教學(xué)過(guò)程:

              1、創(chuàng)設(shè)情境,自然引入

              把問(wèn)題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。

              問(wèn)題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問(wèn)題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?

              問(wèn)題2 你能用幾何推理來(lái)論證得到的關(guān)系嗎?

              對(duì)于問(wèn)題1絕大多數(shù)學(xué)生都能回答出來(lái)(小學(xué)學(xué)過(guò)的),問(wèn)題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書(shū)課題)

              新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的'關(guān)系怎樣呢?”使學(xué)生感覺(jué)本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。

              2、設(shè)問(wèn)質(zhì)疑,探究嘗試

              (1)求證:三角形三個(gè)內(nèi)角的和等于

              讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來(lái),再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫(huà)顯示具體情景。然后,圍繞問(wèn)題設(shè)計(jì)以下幾個(gè)問(wèn)題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。

              問(wèn)題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)

              什么角?問(wèn)題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?

              (把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)

              問(wèn)題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫(huà)一條什么樣的線,作為解決問(wèn)題的橋梁?

              其中問(wèn)題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問(wèn)題3學(xué)生經(jīng)過(guò)思考會(huì)畫(huà)出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫(huà)這條線?畫(huà)這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問(wèn)題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問(wèn)題的目的。

              (2)通過(guò)類比“三角形按邊分類”,三角形按角怎樣分類呢?

              學(xué)生回答后,電腦顯示圖表。

              (3)三角形中三個(gè)內(nèi)角之和為定值

              ,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問(wèn)題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?

              問(wèn)題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?

              問(wèn)題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?

              其中問(wèn)題1學(xué)生很容易得出,提出問(wèn)題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過(guò)分析討論,得出結(jié)論并書(shū)寫證明過(guò)程。

              這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書(shū)寫格式,加強(qiáng)學(xué)生書(shū)寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。

              3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論

              引導(dǎo)學(xué)生分析并嚴(yán)格書(shū)寫解題過(guò)程

            【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

            八年級(jí)的數(shù)學(xué)教案12-14

            八年級(jí)數(shù)學(xué)教案06-18

            初中八年級(jí)數(shù)學(xué)教案11-03

            八年級(jí)的數(shù)學(xué)教案15篇12-14

            【熱門】八年級(jí)數(shù)學(xué)教案11-29

            八年級(jí)數(shù)學(xué)教案【熱】11-29

            八年級(jí)數(shù)學(xué)教案【薦】12-06

            【熱】八年級(jí)數(shù)學(xué)教案12-07

            八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

            人教版八年級(jí)數(shù)學(xué)教案11-04