亚洲日本成本线在观看,最新国自产拍在线,免费性爱视频日本,久久精品国产亚洲精品国产精品

            八年級數(shù)學(xué)教案

            時間:2022-09-12 19:39:38 八年級數(shù)學(xué)教案 我要投稿

            有關(guān)八年級數(shù)學(xué)教案集錦六篇

              作為一名人民教師,時常需要用到教案,教案是教學(xué)活動的依據(jù),有著重要的地位。教案應(yīng)該怎么寫呢?以下是小編為大家整理的八年級數(shù)學(xué)教案6篇,歡迎閱讀,希望大家能夠喜歡。

            有關(guān)八年級數(shù)學(xué)教案集錦六篇

            八年級數(shù)學(xué)教案 篇1

              復(fù)習(xí)第一步::

              勾股定理的有關(guān)計(jì)算

              例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.

              析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

              勾股定理解實(shí)際問題

              例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無風(fēng)的'天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.

              析解:彩旗自然下垂的長度就是矩形DCEF

              的對角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,

              得DE=h=220-150=70(cm)

              所以彩旗下垂時的最低處離地面的最小高度h為70cm

              與展開圖有關(guān)的計(jì)算

              例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.

              析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長度.

              在矩形ACC’A’中,因?yàn)锳C=2,CC’=1

              所以由勾股定理得AC’=.

              ∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為

              復(fù)習(xí)第二步:

              1.易錯點(diǎn):本節(jié)同學(xué)們的易錯點(diǎn)是:在用勾股定理求第三邊時,分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.

              例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

              錯解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒有分清直角三角形的斜邊和直角邊,錯把c當(dāng)成了斜邊.

              正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時,一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2

              例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

              錯解:因?yàn)镽t△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25

              剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

              正解:當(dāng)4為直角邊時,根據(jù)勾股定理第三邊長的平方是25;當(dāng)4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

              溫馨提示:在用勾股定理時,當(dāng)斜邊沒有確定時,應(yīng)進(jìn)行分類討論.

              例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.

              錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

            八年級數(shù)學(xué)教案 篇2

              教材分析

              1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式

              1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項(xiàng)式和等號右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

              2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

              學(xué)情分析

              1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

              ①同類項(xiàng)的定義。

             、诤喜⑼愴(xiàng)法則

             、鄱囗(xiàng)式乘以多項(xiàng)式法則。

              2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

              在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

              教學(xué)目標(biāo)

              (一)教學(xué)目標(biāo):

              1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。

              2、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。

              (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

              數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的'運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。

              (四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。

              (五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

              教學(xué)重點(diǎn)和難點(diǎn)

              重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡單的計(jì)算。

              難點(diǎn):會推導(dǎo)完全平方公式

              教學(xué)過程

              教學(xué)過程設(shè)計(jì)如下:

              〈一〉、提出問題

              [引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個單項(xiàng)式的關(guān)系嗎?

              (2m+3n)2=_______________,(-2m-3n)2=______________,

              (2m-3n)2=_______________,(-2m+3n)2=_______________。

              〈二〉、分析問題

              1、[學(xué)生回答]分組交流、討論

              (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

              (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

             。1)原式的特點(diǎn)。

             。2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。

             。3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號的特點(diǎn))。

             。4)三項(xiàng)與原多項(xiàng)式中兩個單項(xiàng)式的關(guān)系。

              2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

              兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

              兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

              3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

              (a+b)2=a2+2ab+b2;

              (a-b)2=a2-2ab+b2.

              〈三〉、運(yùn)用公式,解決問題

              1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

              (m+n)2=____________, (m-n)2=_______________,

              (-m+n)2=____________, (-m-n)2=______________,

              (a+3)2=______________, (-c+5)2=______________,

              (-7-a)2=______________, (0.5-a)2=______________.

              2、判斷:

              ( )① (a-2b)2= a2-2ab+b2

              ( )② (2m+n)2= 2m2+4mn+n2

              ( )③ (-n-3m)2= n2-6mn+9m2

              ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

              ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

              ( )⑥ (-a-2b)2=(a+2b)2

              ( )⑦ (2a-4b)2=(4a-2b)2

              ( )⑧ (-5m+n)2=(-n+5m)2

              3、一現(xiàn)身手

             、 (x+y)2 =______________;② (-y-x)2 =_______________;

             、 (2x+3)2 =_____________;④ (3a-2)2 =_______________;

             、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

             、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

              〈四〉、[學(xué)生小結(jié)]

              你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

              (1)公式右邊共有3項(xiàng)。

              (2)兩個平方項(xiàng)符號永遠(yuǎn)為正。

              (3)中間項(xiàng)的符號由等號左邊的兩項(xiàng)符號是否相同決定。

              (4)中間項(xiàng)是等號左邊兩項(xiàng)乘積的2倍。

              〈五〉、探險之旅

             。1)(-3a+2b)2=________________________________

              (2)(-7-2m) 2 =__________________________________

             。3)(-0.5m+2n) 2=_______________________________

             。4)(3/5a-1/2b) 2=________________________________

             。5)(mn+3) 2=__________________________________

              (6)(a2b-0.2) 2=_________________________________

             。7)(2xy2-3x2y) 2=_______________________________

              (8)(2n3-3m3) 2=________________________________

              板書設(shè)計(jì)

              完全平方公式

              兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

              兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

            八年級數(shù)學(xué)教案 篇3

              知識技能

              1.了解兩個圖形成軸對稱性的性質(zhì),了解軸對稱圖形的性質(zhì)。

              2.探究線段垂直平分線的性質(zhì)。

              過程方法

              1.經(jīng)歷探索軸對稱圖形性質(zhì)的過程,進(jìn)一步體驗(yàn)軸對稱的特點(diǎn),發(fā)展空間觀察。

              2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認(rèn)真探究、積極思考的能力。

              情感態(tài)度價值觀通過對軸對稱圖形性質(zhì)的探索,促使學(xué)生對軸對稱有了更進(jìn)一步的認(rèn)識,活動與探究的過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動性和積極性,并使學(xué)生具有一些初步研究問題的能力。

              教學(xué)重點(diǎn)

              1.軸對稱的性質(zhì)。

              2.線段垂直平分線的性質(zhì)。

              教學(xué)難點(diǎn)體驗(yàn)軸對稱的特征。

              教學(xué)方法和手段多媒體教學(xué)

              過程教學(xué)內(nèi)容

              引入中垂線概念

              引出圖形對稱的性質(zhì)第一張幻燈片

              上節(jié)課我們共同探討了軸對稱圖形,知道現(xiàn)實(shí)生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對稱的性質(zhì)。

              幻燈片二

              1、圖中的對稱點(diǎn)有哪些?

              2、點(diǎn)A和A的`連線與直線MN有什么樣的關(guān)系?

              理由?:△ABC與△ABC關(guān)于直線MN對稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對稱點(diǎn),設(shè)AA交對稱軸MN于點(diǎn)P,將△ABC和△ABC沿MN對折后,點(diǎn)A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點(diǎn)。

              我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

              定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

            八年級數(shù)學(xué)教案 篇4

              一、教學(xué)目標(biāo):

              1、知識目標(biāo):能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

              2、能力目標(biāo):①,在實(shí)踐操作過程中,逐步探索圖形之間的平移關(guān)系;

             、冢瑢M合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復(fù)制所求的圖形;

              3、情感目標(biāo):經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強(qiáng)對圖形欣賞的意識。

              二、重點(diǎn)與難點(diǎn):

              重點(diǎn):圖形連續(xù)變化的特點(diǎn);

              難點(diǎn):圖形的劃分。

              三、教學(xué)方法:

              講練結(jié)合。使用多媒體課件輔助教學(xué)。

              八年級數(shù)學(xué)上冊教案四、教具準(zhǔn)備:

              多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

              五、教學(xué)設(shè)計(jì):

              教師活動

              學(xué)生活動

              設(shè)計(jì)意圖

              創(chuàng)設(shè)情景,探究新知:

              (演示課件):教材上小狗的圖案。提問:(1)這個圖案有什么特點(diǎn)?(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

              小組討論,派代表回答。(答案可以多種)

              讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對每種答案都要肯定。

              看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?

              展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?

              小組討論,派代表到臺上給大家講解。

              氣氛要熱烈,充分調(diào)動學(xué)生的積極性,發(fā)掘他們的想象力。

              (演示課件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的?

              暢所欲言,互相補(bǔ)充。

              課堂小結(jié):

              在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的'主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。

              課堂練習(xí):

              (演示課件)教材65頁“隨堂練習(xí)”。

              小組討論。

              小組討論完成。

              例子一定要和大家接觸緊密、典型。

              答案不惟一,對于每種答案,教師都要給予充分的肯定。

              六、教學(xué)反思:

              本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。

            八年級數(shù)學(xué)教案 篇5

              教學(xué)目標(biāo):

              (1)理解通分的意義,理解最簡公分母的意義;

              (2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。

              教學(xué)重點(diǎn):分式通分的理解和掌握。

              教學(xué)難點(diǎn):分式通分中最簡公分母的確定。

              教學(xué)工具:投影儀

              教學(xué)方法:啟發(fā)式、討論式

              教學(xué)過程:

              (一)引入

              (1)如何計(jì)算:

              由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。

              (2)如何計(jì)算:

              (3)何計(jì)算:

              引導(dǎo)學(xué)生思考,猜想如何求解?

              (二)新課

              1、類比分?jǐn)?shù)的通分得到分式的通分:

              把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

              注意:通分保證

              (1)各分式與原分式相等;

              (2)各分式分母相等。

              2.通分的依據(jù):分式的基本性質(zhì).

              3.通分的關(guān)鍵:確定幾個分式的最簡公分母.

              通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

              根據(jù)分式通分和最簡公分母的定義,將分式通分:

              最簡公分母為:

              然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx

              通過本例使學(xué)生對于分式的'通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。

              例1 通分:xxx

              分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

              解:∵ 最簡公分母是12xy2,

              小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).

              解:∵最簡公分母是10a2b2c2,

              由學(xué)生歸納最簡公分母的思路。

              分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。

            八年級數(shù)學(xué)教案 篇6

              一、課堂引入

              1.什么叫做平行四邊形?什么叫做矩形?

              2.矩形有哪些性質(zhì)?

              3.矩形與平行四邊形有什么共同之處?有什么不同之處?

              4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

              通過討論得到矩形的判定方法.

              矩形判定方法1:對角錢相等的平行四邊形是矩形.

              矩形判定方法2:有三個角是直角的四邊形是矩形.

              (指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時第四個角一定是直角.)

              二、例習(xí)題分析

              例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么?

             。1)有一個角是直角的四邊形是矩形;(×)

             。2)有四個角是直角的四邊形是矩形;(√)

             。3)四個角都相等的四邊形是矩形;(√)

              (4)對角線相等的四邊形是矩形;(×)

             。5)對角線相等且互相垂直的四邊形是矩形;(×)

              (6)對角線互相平分且相等的四邊形是矩形;(√)

             。7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

              (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

             。9)兩組對邊分別平行,且對角線相等的'四邊形是矩形.(√)

              指出:

              (l)所給四邊形添加的條件不滿足三個的肯定不是矩形;

             。2)所給四邊形添加的條件是三個獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

              例2(補(bǔ)充)已知ABCD的對角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

              分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長,從而得到面積值.

              解:∵ 四邊形ABCD是平行四邊形,

              ∴AO=AC,BO=BD.

              ∵ AO=BO,

              ∴ AC=BD.

              ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

              在Rt△ABC中,

              ∵ AB=4cm,AC=2AO=8cm,

              ∴BC=(cm).

              例3(補(bǔ)充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

              分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

            【八年級數(shù)學(xué)教案】相關(guān)文章:

            八年級的數(shù)學(xué)教案12-14

            八年級數(shù)學(xué)教案06-18

            八年級數(shù)學(xué)教案【薦】12-06

            【薦】八年級數(shù)學(xué)教案12-03

            八年級數(shù)學(xué)教案【推薦】12-04

            【推薦】八年級數(shù)學(xué)教案12-05

            八年級數(shù)學(xué)教案【熱門】12-03

            八年級的數(shù)學(xué)教案15篇12-14

            【熱】八年級數(shù)學(xué)教案12-07

            人教版八年級數(shù)學(xué)教案11-04