初一數(shù)學(xué)教案(集合15篇)
作為一位兢兢業(yè)業(yè)的人民教師,往往需要進(jìn)行教案編寫工作,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。那么問題來了,教案應(yīng)該怎么寫?以下是小編為大家整理的初一數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
初一數(shù)學(xué)教案1
一、學(xué)習(xí)目標(biāo):
1.添括號法則.
2.利用添括號法則靈活應(yīng)用完全平方公式
二、重點難點
重點:理解添括號法則,進(jìn)一步熟悉乘法公式的合理利用
難點:在多項式與多項式的乘法中適當(dāng)添括號達(dá)到應(yīng)用公式的目的.
三、合作學(xué)習(xí)
、.提出問題,創(chuàng)設(shè)情境
請同學(xué)們完成下列運算并回憶去括號法則.
(1)4+(5+2)
(2)4-(5+2)
(3)a+(b+c)
(4)a-(b-c)
去括號法則:
去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不變號;
如果括號前是負(fù)號,去掉括號后,括號里的各項都要變號。
1.在等號右邊的括號內(nèi)填上適當(dāng)?shù)捻棧?/p>
(1)a+b-c=a+( )
(2)a-b+c=a-( )
(3)a-b-c=a-( )
(4)a+b+c=a-( )
2.判斷下列運算是否正確.
(1)2a-b- =2a-(b- )
(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)
(4)a-2b-4c+5=(a-2b)-(4c+5)
添括號法則:添上一個正括號,擴到括號里的不變號,添上一個負(fù)括號,擴到括號里的要變號。
四、精講精練
例:運用乘法公式計算
(1)(x+2y-3)(x-2y+3)
(2)(a+b+c)2
(3)(x+3)2-x2
(4)(x+5)2-(x-2)(x-3)
隨堂練習(xí):教科書練習(xí)
五、小結(jié):去括號法則
六、作業(yè):教科書習(xí)題
初一數(shù)學(xué)教案2
一、學(xué)習(xí)與導(dǎo)學(xué)目標(biāo):
知識與技能:借助數(shù)軸理解相反數(shù)的意義,懂得數(shù)軸上表示相反數(shù)的兩個點關(guān)于原點對稱,會求有理數(shù)的相反數(shù);
過程與方法:經(jīng)歷概念的生成、應(yīng)用,體會相反數(shù)的意義,簡化數(shù)的符號,學(xué)習(xí)觀察、歸納、概括的策略與方法;
情感態(tài)度:通過師生、生生合作學(xué)習(xí),促進(jìn)交流,激發(fā)興趣。
二、學(xué)程與導(dǎo)程活動:
A、準(zhǔn)備活動:
1、師生游戲“唱反調(diào)”:我們知道在小學(xué)學(xué)過的0以外的數(shù)前面加上負(fù)號“-”的數(shù)就是負(fù)數(shù),F(xiàn)在我說一個正數(shù),你們給它添上“-”號說出來,我如果說一個負(fù)數(shù),你們反過來說出對應(yīng)的正數(shù)。+3、+1、-1/2、-18.4、0.75,學(xué)生很快說出-3、-1、1/2、18.4、-0.175。
2、上述“唱反調(diào)”的兩個數(shù)3與-3,1與-1,-1/2與1/2……,在數(shù)軸上對應(yīng)的點的位置如何?可建議生擇兩組在數(shù)軸上表示以后作答(在原點兩側(cè)到原點的距離相等,真可謂從原點背道而馳“唱反調(diào)”)。
提問:數(shù)軸上與原點距離是4的點有幾個?這些點表示的數(shù)是多少?
歸納:設(shè)a是一個正數(shù),數(shù)軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關(guān)于原點對稱。
B、學(xué)習(xí)概念:
1、像3和-3,1和-1,-1/2和1/2這樣,只有負(fù)號不同的兩個數(shù)給它一個什么樣的關(guān)系名稱合適呢?生:互為相反數(shù),師:很好,我們把上述只有負(fù)號不同的兩個數(shù)叫做互為相反數(shù)(oppositenumber)。也就是說3的相反數(shù)是-3,-3的`相反數(shù)是3。可見:相反數(shù)是成對出現(xiàn)的,不能單獨存在。
一般地,a和-a互為相反數(shù)。“-a”可讀成“a的相反數(shù)”。
2、在數(shù)軸上看,表示相反數(shù)的兩個點和原點有什么關(guān)系?(關(guān)于原點對稱)
3、從上述意義上看,你看如何規(guī)定0的相反數(shù)更為合理?
商討得:0的相反數(shù)仍是0,即0的相反數(shù)等于它本身。
C、應(yīng)用舉例:
1、兩人一組,一人任說一個有理數(shù),請同伴說出它的相反數(shù)。
2、如果a=-a,那么表示數(shù)a的點在數(shù)軸上的什么位置?a=?(a=0)。
3、在正數(shù)前面添上“-”號,就得到這個數(shù)的相反數(shù),同樣地,在任意一個數(shù)前面添上“-”號,新的數(shù)就表示原數(shù)的相反數(shù),如:-(+5)=-5,-(-5)=5,-0=0。
結(jié)合前面相反數(shù)意義的量的學(xué)習(xí),還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?
4、化簡下列各數(shù)P124練習(xí),你愿意繼續(xù)嘗試化簡下列各式嗎?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能試著總結(jié)規(guī)律嗎?(括號內(nèi)外同號結(jié)果為正,括號內(nèi)外異號結(jié)果為負(fù))。
5、若a=-5,則-a=;若-x=7,則x=。
三、筆記與板書提綱:
課題應(yīng)用舉例中的2
活動引例應(yīng)用舉例中的4(學(xué)生練習(xí)),5、概念
四、練習(xí)與拓展選題:
1、教科書P18/3;
2、如圖是正方形紙盒的側(cè)面展示圖,請你在正方形內(nèi)分別填上6個不同的數(shù),使折成正方體后相對的面上的兩個數(shù)互為相反數(shù)(寫出滿足條件的一種情形即可)。
初一數(shù)學(xué)教案3
【教學(xué)內(nèi)容】
第二章 2.1 正數(shù)與負(fù)數(shù) 2.2 數(shù)軸
【教學(xué)目標(biāo)】
1、會判斷一個數(shù)是正數(shù)還是負(fù)數(shù),理解負(fù)數(shù)的意義。
2、會把已知數(shù)在數(shù)軸上表示,能說出已知點所表示的數(shù)。
3、了解數(shù)軸的原點、正方向、單位長度,能畫出數(shù)軸。
4、會比較數(shù)軸上數(shù)的大小。
【知識講解】
一、本講主要學(xué)習(xí)內(nèi)容
1、負(fù)數(shù)的意義及表示 2、零的位置和地位
3、有理數(shù)的分類 4、數(shù)軸概念及三要素
5、數(shù)軸上數(shù)與點的對應(yīng)關(guān)系 6、數(shù)軸上數(shù)的.比較大小
其中,負(fù)數(shù)的概念,數(shù)軸的概念及其三要素以及數(shù)軸上數(shù)的比較大小是重點。負(fù)數(shù)的意義是難點。
下面概述一下這六點的主要內(nèi)容
1、負(fù)數(shù)的意義及表示
把大于0的數(shù)叫正數(shù)如5,3,+3等。在正數(shù)前加上“-”號的數(shù)叫做負(fù)數(shù)如-5,-3,- 等。負(fù)數(shù)是表示相反意義的量,如:低于海平面-155米表示為-155m,虧損50元表示-50元。
2、零的位置和地位
零既不是正數(shù),也不是負(fù)數(shù),但它是自然數(shù)。它可以表示沒有,也可以在數(shù)軸上分隔正數(shù)和分?jǐn)?shù),甚至可以表示始點,表示缺位,這將在下面詳細(xì)介紹。
3、有理數(shù)的分類
正整數(shù)、零、負(fù)整數(shù)統(tǒng)稱為整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
正整數(shù)
整數(shù) 零 正有理數(shù)
有理數(shù) 負(fù)整數(shù) 或 有理數(shù) 零
分?jǐn)?shù) 正分?jǐn)?shù) 負(fù)有理數(shù)
負(fù)分?jǐn)?shù)
初一數(shù)學(xué)教案4
教學(xué)目標(biāo):
(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;
(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會主動探求問題和尋找解決問題的方法。
教學(xué)重點:一元二次不等式的解法(圖象法)
教學(xué)難點:
(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;
(2)數(shù)形結(jié)合思想的滲透
教學(xué)方法與教學(xué)手段:
嘗試探索教學(xué)法、歸納概括。
教學(xué)過程:
一、復(fù)習(xí)引入
1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系
[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的嗎?
學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7
[師]請同學(xué)們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當(dāng)x 時,y = 0,即 2x-7 0;
當(dāng)x 時,y < 0,即 2x-7 0;
當(dāng)x 時,y > 0,即 2x-7 0;
注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)
(2)由學(xué)生填空(一邊演示y<0,y>0部分圖象)
從上例的特殊情形,你能得出什么結(jié)論?
注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實質(zhì)上就是直線y=ax+b與x軸交點的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b<0)的解集實質(zhì)上就是使得函數(shù)的圖象在x軸上方還是下方時x的取值范圍。
2.新課導(dǎo)入
[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
二、講解新課
1、一元二次不等式解法的探索
[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3<0(即y<0)的解集是
注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點,確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y<0部分圖象)
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?
注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,<0來確定的。
2、講解例題
[師]接下來請同學(xué)們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2) -3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學(xué)生共同詳細(xì)分析(1),強調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)
所以原不等式的`解集是{x| x<- x="">2 }
四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6
五、教學(xué)設(shè)計說明:
1、本節(jié)課教學(xué)設(shè)計力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)的教學(xué)原則,通過對原有知識的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識,激發(fā)學(xué)生的求知欲望,調(diào)動學(xué)生的積極性。
2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。
3、本節(jié)課的重點是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。
4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實基礎(chǔ),提高運算能力。
初一數(shù)學(xué)教案5
教學(xué)目標(biāo)
1,整理前兩個學(xué)段學(xué)過的整數(shù)、分?jǐn)?shù)(包括小數(shù))的知識,掌握正數(shù)和負(fù)數(shù)的概念;
2,能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負(fù)數(shù);
3,體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點:正確區(qū)分兩種不同意義的量。
知識重點:兩種相反意義的量
教學(xué)過程:(師生活動)設(shè)計理念
設(shè)置情境
引入課題上課開始時,教師應(yīng)通過具體的例子,簡要說明在前兩個學(xué)段我們已經(jīng)學(xué)過的數(shù),并由此請學(xué)生思考:生
活中僅有這些“以前學(xué)過的數(shù)”夠用了嗎?下面的例子僅供參考.
師:今天我們已經(jīng)是七年級的學(xué)生了,我是你們的數(shù)學(xué)老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學(xué),其中男同學(xué)有22個,占全班總?cè)藬?shù)的37%…
問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學(xué)過的數(shù)的分類方法進(jìn)行分類嗎?
學(xué)生活動:思考,交流
師:以前學(xué)過的數(shù),實際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?
請同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負(fù)數(shù)的必要性)并思考討論,然后進(jìn)行交流。
。ㄒ部梢猿鍪練庀箢A(yù)報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。先回顧小學(xué)里學(xué)過的數(shù)的類型,歸納出我們已經(jīng)學(xué)了整數(shù)和分?jǐn)?shù),然后,舉一些實際生活有相反意義的量,說明為了表示相反意義的量,我們需要引入負(fù)數(shù),這樣做強調(diào)了數(shù)學(xué)的嚴(yán)密性,但對于學(xué)生來說,更多
地感到了數(shù)學(xué)的枯燥乏味為了既復(fù)習(xí)小學(xué)里學(xué)過的數(shù),又能激發(fā)學(xué)生的學(xué)習(xí)興
趣,所以創(chuàng)設(shè)如下的問題情境,以盡量貼近學(xué)生的實際.
這個問題能激發(fā)學(xué)生探究的欲望,學(xué)生自己看書學(xué)習(xí)是培養(yǎng)學(xué)生自主學(xué)習(xí)的重要途徑,都應(yīng)予以重視。
以上的情境和實例使學(xué)生體會生活中處處有數(shù)學(xué),通過實例,使學(xué)生獲取大量的感性材料,為正確建立相反意義的量奠定基礎(chǔ)。
分析問題
探究新知問題3:前面帶有“一”號的新數(shù)我們應(yīng)怎樣命名它呢?為什么要引人負(fù)數(shù)呢?通常在日常生活中我們用正數(shù)和負(fù)數(shù)分別表示怎樣的量呢?
這些問題都必須要求學(xué)生理解.
教師可以用多媒體出示這些問題,讓學(xué)生帶著這些問題看書自學(xué),然后師生交流.
這階段主要是讓學(xué)生學(xué)會正數(shù)和負(fù)數(shù)的表示.
強調(diào):用正,負(fù)數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量.這些問題是這節(jié)課的主要知識,教師要清楚地向?qū)W生說明,并且要注意語言的準(zhǔn)確與規(guī)范,要舍得花時間讓學(xué)充分發(fā)表想法。
舉一反三思維拓展經(jīng)過上面的討論交流,學(xué)生對為什么要引人負(fù)數(shù),對怎樣用正數(shù)和負(fù)數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學(xué)生舉出實際生活中類似的例子,以加深對正數(shù)和負(fù)數(shù)概念的理解,并開拓思維.
問題4:請同學(xué)們舉出用正數(shù)和負(fù)數(shù)表示的例子.
問題5:你是怎樣理解“正整數(shù)”“負(fù)整數(shù),,’’正分?jǐn)?shù)”和“負(fù)分?jǐn)?shù)”的呢?請舉例說明.
能否舉出例子是學(xué)生對知識掌握程度的體現(xiàn),也能進(jìn)一步幫助學(xué)生理解引負(fù)數(shù)的必要性
課堂練習(xí)教科書第5頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié)圍繞下面兩點,以師生共同交流的方式進(jìn)行:
1, 0由于實際問題中存在著相反意義的'量,所以要引人負(fù)數(shù),這樣數(shù)的范圍就擴大了;
2,正數(shù)就是以前學(xué)過的0以外的數(shù)(或在其前面加“+”),負(fù)數(shù)就是在以前學(xué)過的0以外的數(shù)前面加“-”。
本課作業(yè)教科書第7頁習(xí)題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設(shè)必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學(xué)生的需要
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
密切聯(lián)系生活實際,創(chuàng)設(shè)學(xué)習(xí)情境.本課是有理數(shù)的第一節(jié)課時.引人負(fù)數(shù)是數(shù)的范圍的一次重要擴充,學(xué)生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實是一次知識的順應(yīng)過程),而負(fù)數(shù)相對于以前的數(shù),對學(xué)生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數(shù),就必須對原有的數(shù)的結(jié)構(gòu)進(jìn)行整理,引人幣的舉例就是這個目的.
負(fù)數(shù)的產(chǎn)生主要是因為原有的數(shù)不夠用了(不能正確簡潔地表示數(shù)量),書本的例子或圖片中出現(xiàn)的負(fù)數(shù)就是讓學(xué)生去感受和體驗這一點.使學(xué)生接受生活生產(chǎn)實際中確實存在著兩種相反意義的量是本課的教學(xué)難點,所以在教學(xué)中可以多舉幾個這方面的例子,并且所舉的例子又應(yīng)該符合學(xué)生的年齡和思維特點。當(dāng)學(xué)生接受了這個事實后,引入負(fù)數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.
這個教學(xué)設(shè)計突出了數(shù)學(xué)與實際生活的緊密聯(lián)系,使學(xué)生體會到數(shù)學(xué)的應(yīng)用價值,
體現(xiàn)了學(xué)生自主學(xué)習(xí)、合作交流的教學(xué)理念,書本中的圖片和例子都是生活生產(chǎn)中常見的事實,學(xué)生容易接受,所以應(yīng)該讓學(xué)生自己看書、學(xué)習(xí),并且鼓勵學(xué)生討論交流,教師作適當(dāng)引導(dǎo)就可以了。
初一數(shù)學(xué)教案6
一內(nèi)容和內(nèi)容解析
1.內(nèi)容
二元一次方程,二元一次方程組概念
2.內(nèi)容解析
二元一次方程組是解決含有兩個提供運算未知數(shù)的問題的有力工具,也是解決后續(xù)一些數(shù)學(xué)問題的基礎(chǔ)。直接設(shè)兩個未知數(shù),列方程,方程組更加直觀,本章就從這個想法出發(fā)引入新內(nèi)容.
本節(jié)課一以引言中的問題開始,引導(dǎo)學(xué)生思考“問題中包含的等量關(guān)系”以及“設(shè)兩個未知數(shù)后如何用方程表示等量關(guān)系”.繼而深入探究二元一次方程,二元一次方程組的解.
本節(jié)課的教學(xué)重點是:二元一次方程,二元一次方程組的概念
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)會設(shè)兩個未知數(shù)后用方程表示等量關(guān)系列二元一次方程,二元一次方程組.
(2)理解解二元一次方程,二元一次方程組的解的概念.
2.教學(xué)目標(biāo)解析
(1)學(xué)生能掌握設(shè)兩個未知數(shù)后,分析問題中包含的等量關(guān)系”以及“用方程表示等量關(guān)系”.
(2)要讓學(xué)生經(jīng)歷探究的過程.體會二元一次方程組的解,二元一次方程組的解是實際意義.
三、教學(xué)問題診斷分?jǐn)?/strong>
1.學(xué)生過去已遇到二元問題,但只設(shè)一個未知數(shù),再表示出另一個未知數(shù),用一元一次方程解決.現(xiàn)在如何引導(dǎo)學(xué)生設(shè)兩個未知數(shù)。需要結(jié)合實際問題進(jìn)行分析。由于方程組的兩個方程中同一個未知數(shù)表示的是同一數(shù)量,通過觀察對照,可以發(fā)現(xiàn)一元一次方程向二元一次方程組轉(zhuǎn)化的思路
2.結(jié)合一元一次方程的解向二元一次方程,二元一次方程組的解轉(zhuǎn)化,學(xué)習(xí)知識的遷移.
本節(jié)教學(xué)難點:
1.把一元向二元的轉(zhuǎn)化,設(shè)兩個未知數(shù).結(jié)合實際問題進(jìn)行分析,列二元一次方程,二元一次方程組.
2.二元一次方程組的解的意義
四、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題1籃球聯(lián)賽中,每場都要分出勝負(fù),每隊勝1場得2分,負(fù)1場得1分,某隊10場比賽中得到16分,那么這個隊勝負(fù)場數(shù)分別是多少?你能用一元一次方程解決這個問題嗎?
師生活動:學(xué)生回答:能。設(shè)勝x場,負(fù)(10-x)場。根據(jù)題意,得2x+(10-x)=16
x=6,則勝6場,負(fù)4場
教師追問:你能根據(jù)兩個問題中的等量關(guān)系設(shè)兩個未知數(shù)列出二個反映題意的方程嗎?
師生活動:學(xué)生回答:能。設(shè)勝x場,負(fù)y場。根據(jù)題意,得x+y=10 , 2x+y=16.
教師歸納:像這樣,每個方程都含有兩個未知數(shù)(x和y)并且含有未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
設(shè)計意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個問題,轉(zhuǎn)變思路,再列二元一次方程,為后面教學(xué)做好了鋪墊.
問題2:對比兩個方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?
師生活動:通過對實際問題的分析,認(rèn)識方程組中的兩個x,y都是這個隊的勝,負(fù)場
數(shù),它們必須同時滿足這兩個方程,這樣,連在一起寫成
就組成了一個方程組。這個方程組中每個方程都含有兩個未知數(shù)(x和y)并且含有未知數(shù)的項的次數(shù)都是1,像這樣的方程組叫做二元一次方程組。
設(shè)計意圖:從實際出發(fā),引入方程組的概念,切合學(xué)生的認(rèn)知過程。
問題3:探究
滿足了方程①,且符合問題的實際意義的x,y的值有哪些?把它們填入表中
x
y
上表中哪些x,y的值還滿足方程②?
學(xué)生小組合作完成。
教師歸納:一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解.一般地,二元一次方程組兩個方程的公共解,叫做二元一次方程組的解
設(shè)計意圖:類比一元一次方程的解,學(xué)習(xí)二元一次方程的解,二元一次方程組的解。
2.應(yīng)用新知,提升能力
例1把一個長20m的鐵絲圍成一個長方形。如果一邊長為xm,它的`鄰邊為ym .求
(1) x和y滿足的關(guān)系式;
(2)當(dāng)x=15時,y的值;.
(3)當(dāng)y=12時,x的值
師生活動:小組討論,然后每組各派一名代表上黑板完成.
設(shè)計意圖:借助本題,充分發(fā)揮學(xué)生的合作探究精神通過比較,進(jìn)一步體會二元一次方程及二元一次方程的解的意義.
3加深認(rèn)識,鞏固提高
練習(xí):一條船順流航行,每小時行20 km,逆流航行,每小時行16km .求船在靜水中的速度和水的流速。
師生活動:分兩小組討論.一組用一元一次方程解決,另一組嘗試列方程組(不要求求解),為解二元一次方程組埋下伏筆。然后每組各派一名代表上黑板完成。
設(shè)計意圖:提醒并指導(dǎo)學(xué)生要先分析問題的兩個未知數(shù)關(guān)系,嘗試結(jié)合題意,尋找到兩個等量關(guān)系,列方程組。體會直接設(shè)兩個未知數(shù),列方程,方程組更加直觀,4歸納總結(jié)
師生活動:共同回顧本節(jié)課的學(xué)習(xí)過程,并回答以下問題
1.二元一次方程,二元一次方程組的概念
2.二元一次方程,二元一次方程組的解的概念.
3.在探究的過程中用到了哪些思想方法?
4.你還有哪些收獲?
設(shè)計意圖:通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生自我歸納概括的能力.
初一數(shù)學(xué)教案7
教學(xué)內(nèi)容分析
教育不只是一種簡單的“告訴”。學(xué)生擁有自己的獨立思考水平和認(rèn)知系統(tǒng)。當(dāng)他們遇到一個新的待解決的問題情境時,他們會自覺而主動地從自己已有的知識架構(gòu)和認(rèn)知經(jīng)驗中摸索、收集、調(diào)動處理問題的方法和策略。三角形邊的關(guān)系這一內(nèi)容是新教材新增加的內(nèi)容,并安排在第二學(xué)段。通過這一內(nèi)容的學(xué)習(xí),使學(xué)生在已經(jīng)建立三角形概念的基礎(chǔ)上,進(jìn)一步深化理解三角形的組成特征,加深學(xué)生對三角形的認(rèn)識,同時,也為以后學(xué)習(xí)三角形與四邊形及其他多邊形的聯(lián)系與區(qū)別打下基礎(chǔ)。
根據(jù)新課標(biāo)的精神,要改變學(xué)生學(xué)習(xí)的方式,讓學(xué)生經(jīng)歷“數(shù)學(xué)化”、“做數(shù)學(xué)”等過程,并注重與生活實際緊密聯(lián)系,學(xué)有價值的數(shù)學(xué)。根據(jù)這一教學(xué)內(nèi)容在教材中所處的地位與作用,以及新課標(biāo)的要求,我認(rèn)為設(shè)計這節(jié)課的理念是:活動參與、自主建構(gòu),聯(lián)系生活、應(yīng)用數(shù)學(xué)。
教學(xué)目標(biāo)
知識目標(biāo)
知道和理解“三角形任意兩邊的和大于第三邊”,能用它解釋一些生活現(xiàn)象,解決一些簡單的生活問題。
能力目標(biāo)
通過動手操作、小組驗證,體驗探索三角形邊的關(guān)系的過程,培養(yǎng)猜測意識和自主探索、合作交流的能力。
情感目標(biāo)
經(jīng)歷探究、發(fā)現(xiàn)、驗證“三角形任意兩邊的`和大于第三邊”的過程,體驗合作學(xué)習(xí)和數(shù)學(xué)學(xué)習(xí)的快樂。
教學(xué)重點
三角形三邊關(guān)系的實驗與探究
教學(xué)難點
三角形三邊關(guān)系的探究過程。
教學(xué)關(guān)鍵
使學(xué)生理解三角形邊的關(guān)系
教學(xué)準(zhǔn)備
課件、三根小棒、三邊關(guān)系試驗報告單每組四根小棒
教學(xué)方法
自主探究小組討論
課程類型
學(xué)科課程
教學(xué)過程
活動的組織與實施(含教師活動和學(xué)生活動)
設(shè)計意圖
時間分配
一、復(fù)習(xí)舊知,導(dǎo)入新課
我手上拿的是什么?(三角板)它是什么圖形呢?(三角形)誰來說說什么是三角形?怎樣理解這個“圍”字(端點首尾相連)。同學(xué)們還知道三角形的哪些知識?關(guān)于三角形的知識還有很多,我們繼續(xù)往下看。
復(fù)習(xí)舊的知識,使新舊知識之間有很好的連接
2分鐘
二、動手操作,發(fā)現(xiàn)問題
師:老師這里有三根小棒,分別長3、5、10厘米,這3根小棒能圍成一個什么圖形?
生:三角形。
師:誰愿意上來圍一圍?圍的時候要注意小棒首尾相連。
師:這三根小棒為什么圍不成三角形呢?三角形的三條邊之間到底有什么關(guān)系呢?今天,我們就一起來研究三角形的三邊關(guān)系(板書課題)
三、猜想驗證,發(fā)現(xiàn)規(guī)律
師:我們發(fā)現(xiàn)這三根小棒不能圍成三角形,怎樣做才能圍成三角形呢?
生:換一根小棒
師:怎樣換?同學(xué)們說的都是你們的猜想(課件演示猜想1)
1、學(xué)法指導(dǎo)師:你們的這些猜想是否正確,三角形的三條邊到底有什么關(guān)系?我們可以通過做實驗來驗證一下,現(xiàn)在老師給同學(xué)們準(zhǔn)備了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起試著圍一圍三角形。同學(xué)們親自動手?jǐn)[一擺,拼一拼,看看有什么結(jié)果。先看要求(大屏幕)操作要求:(1)、2人一組合作完成四種拼法(2)、圍三角形時要注意首尾相連。(3)、完成后,填寫好活動記錄表準(zhǔn)備交流
2、動手操作,尋找規(guī)律(師巡視,并指導(dǎo))
3、交流匯報,探究規(guī)律。
師:哪個小組愿意來匯報。小組上臺展示,
3厘米、8厘米、10厘米能
3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能師:其它組有不同意見嗎?
師:仔細(xì)觀察四種結(jié)果,有的圍不成,而有的卻能圍成。這是為什么呢?先看不能圍成三角形的每組小棒的長度之間有什么關(guān)系?說說你能發(fā)現(xiàn)些什么?同桌討論一下。能圍成三角形的這幾組小棒長度之間又有什么聯(lián)系?
三根小棒要圍成三角形,必須滿足什么條件?
通過剛才的實驗和分析,你發(fā)現(xiàn)三角形三條邊長度之間有什么關(guān)系嗎?先看不能圍成三角形的這組情況,誰愿意說說3、5、10這三根小棒為什么不能圍成三角形?
生:
師:其他同學(xué)贊同嗎?誰再來說一說。
師:我明白了,3厘米的邊是不能和5厘米、10厘米的邊圍成三角形的,因為這兩條邊之和小于第三條邊。(板書3+4〈 8)你很會觀察。
。ㄕn件演示)師:再說3、5、8這三根,同學(xué)們有些爭議,到底它們能不能圍成三角形呢?不能,為什么?有誰愿意談?wù)劊?/p>
生:3+5=8重合了不能
師:是這樣嗎?(課件演示)請看大屏幕。
師:真的是這樣,通過演示現(xiàn)在明白這個同學(xué)的意思了嗎?誰愿意再來說一說。
師:通過以上的動手操作和探究分析,我們發(fā)現(xiàn)了當(dāng)兩邊之和小于、等于第三條邊時,這3條邊是圍不成三角形的。
師:那么怎樣才能圍成三角形呢?
生:兩條邊加起來要大于第三邊就行了。
師(板書):兩邊之和大于第三邊
師:我們來看看能圍成三角形的這兩組是不是這樣的呢,3+8>10、8+5>10看起來是這樣的。
3)師:回頭看不能圍成的情況,也有3+8>4、4+8>3、3+8>5、5+8>3(兩邊之和大于第三邊)的情況,怎么就不能圍成三角形呢?
生:有一種不符合就不行了
師:看來只是其中的兩條邊之和大于第3條邊是不完整的
生1:加“任何”、“任意”
生2:其他兩邊之和都大于第三條邊。
生3:無論哪兩條邊之和都要大于第三邊。
4、歸納小結(jié)
師:看來只是其中的兩條邊之和大于第3條邊是不完整的,
師:這句話概括說就是:任意兩邊之和大于第三邊(板書:任意)師:是這樣嗎?再挑選一組能圍成三角形的三條邊,來驗證:生:3+4>5、3+5>4、4+5>3,師:這個例子證明了你的想法是對的,這兩個三角形的三邊關(guān)系都是:任意兩邊之和大于第三邊(齊讀)
四、運用結(jié)論,加深理解
師:我們已經(jīng)知道三角形的三邊關(guān)系,下面讓我們來判斷幾道題目
1、快速判斷。
3cm、5cm、() 4cm
7cm、4cm、() 2cm
6cm、3cm、() 1cm
2cm、3cm、() 3cm
師:為什么圍不成?你是怎么判斷的?
2、出示P82例3圖
這是小明上學(xué)的路線圖,同學(xué)們仔細(xì)看一看,他可以怎樣走?
3、這幾條路中,哪條最近?這是為什么呢?
老師在生活中還看到了這么一種現(xiàn)象:(課件演示)公園里有一條這樣的路,路的兩旁是草坪,為什么很多人都往草坪中間走?師:今天你有什么收獲?
其實數(shù)學(xué)就在我們身邊,只要你平時多觀察、多動腦,你一定能成為數(shù)學(xué)的好朋友。
開發(fā)學(xué)生的動手能力和觀察能力,在實踐中發(fā)現(xiàn)問題并嘗試找出問題的原因反復(fù)試驗,加深同學(xué)的理解,猜想驗證,發(fā)現(xiàn)其內(nèi)在規(guī)律增強小組合作意識以及動手操作能力鍛煉同學(xué)發(fā)言及表達(dá)能力
通過小組討論,發(fā)現(xiàn)問題,嘗試找出原因,激發(fā)學(xué)生自主學(xué)習(xí)的精神在教學(xué)過程中不斷引導(dǎo),自主發(fā)現(xiàn)問題,加深對知識的理解和鞏固運用練習(xí),鞏固學(xué)習(xí)的知識,加深印象
3分鐘5分鐘7分鐘3分鐘5分鐘10分鐘5分鐘
板書設(shè)計
三角形邊的關(guān)系兩邊之和大于第三邊
教學(xué)反思
本節(jié)課鞏固應(yīng)用部分的三個環(huán)節(jié),是從學(xué)生的學(xué)習(xí)認(rèn)知規(guī)律出發(fā),遵循從易到難的原則,分鞏固性練習(xí)、應(yīng)用性練習(xí)、拓展性練習(xí)三個層次。并與學(xué)生身邊的生活例子相結(jié)合,既能體現(xiàn)數(shù)學(xué)教學(xué)生活化的新理念,又能有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,拓展學(xué)生的思維,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。
以上教學(xué)設(shè)計,以學(xué)生的學(xué)習(xí)心理為基礎(chǔ),通過簡單的動手操作,創(chuàng)設(shè)有效的“數(shù)學(xué)問題情境”,激發(fā)學(xué)生強烈的探究欲望。通過引導(dǎo)學(xué)生大膽的猜想,積極的驗證和合理的歸納,使學(xué)生學(xué)到新知識的同時,經(jīng)歷數(shù)學(xué)知識的形成過程,這樣的教學(xué)將會有效地激活了學(xué)生的數(shù)學(xué)思維,使學(xué)生在知識、能力,以及情感態(tài)度等方面都將得到較好的發(fā)展。又通過擺圖形,尋找數(shù)據(jù)間的關(guān)系;又通過數(shù)據(jù)的整理和分析,確定圖形的存在性和圖形具有的性質(zhì),使數(shù)形緊密結(jié)合,滲透了數(shù)形結(jié)合的思想方法;同時對不同類型三角形都具有的共性歸納總結(jié),滲透了數(shù)學(xué)的歸納思想。教學(xué)中始終以這一核心的思想為教學(xué)靈魂,時時滲透,處處體現(xiàn)。
初一數(shù)學(xué)教案8
7.3.1多邊形
[教學(xué)目標(biāo)]
1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念.
2.區(qū)別凸多邊形與凹多邊形.
[教學(xué)重點、難點]
1.重點:
。1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.
。2)區(qū)別凸多邊形和凹多邊形.
2.難點:
多邊形定義的準(zhǔn)確理解.
[教學(xué)過程]
一、新課講授
投影:圖形見課本P84圖7.3一l.
你能從投影里找出幾個由一些線段圍成的圖形嗎?
上面三圖中讓同學(xué)邊看、邊議.
在同學(xué)議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?
。1)它們在同一平面內(nèi).
。2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.
這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
提問:三角形的定義.
你能仿照三角形的定義給多邊形定義嗎?
1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形.
如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)
2.多邊形的邊、頂點、內(nèi)角和外角.
多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
3.多邊形的對角線
連接多邊形的`不相鄰的兩個頂點的線段,叫做多邊形的對角線.
讓學(xué)生畫出五邊形的所有對角線.
4.凸多邊形與凹多邊形
看投影:圖形見課本P85.7.3—6.
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們在習(xí)題、練習(xí)中提到的多邊形都是凸多邊形.
5.正多邊形
由正方形的特征出發(fā),得出正多邊形的概念.
各個角都相等,各條邊都相等的多邊形叫做正多邊形.
二、課堂練習(xí)
課本P86練習(xí)1.2.
三、課堂小結(jié)
引導(dǎo)學(xué)生總結(jié)本節(jié)課的相關(guān)概念.
四、課后作業(yè)
課本P90第1題.
備用題:
一、判斷題.
1.由四條線段首尾順次相接組成的圖形叫四邊形.()
2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()
3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側(cè),叫做四邊形.()
4.在同一平面內(nèi),四條線段首尾順次連接組成的圖形叫四邊形.()
二、填空題.
1.連接多邊形的線段,叫做多邊形的對角線.
2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.
3.各個角,各條邊的多邊形,叫正多邊形.
三、解答題.
1.畫出圖(1)中的六邊形ABCDEF的所有對角線.
2.如圖(2),O為四邊形ABCD內(nèi)一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數(shù)有何關(guān)系?
3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數(shù)有何關(guān)系?
4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數(shù)有何關(guān)系?
初一數(shù)學(xué)教案9
學(xué)習(xí)目標(biāo):
1.理解平行線的意義兩條直線的兩種位置關(guān)系;
2.理解并掌握平行公理及其推論的內(nèi)容;
3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;
學(xué)習(xí)重點:
探索和掌握平行公理及其推論.
學(xué)習(xí)難點:
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)
一、學(xué)習(xí)過程:預(yù)習(xí)提問
兩條直線相交有幾個交點?
平面內(nèi)兩條直線的位置關(guān)系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據(jù)此方法練習(xí)畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
、谶^點C畫直線a的.平行線,能畫 條;
③你畫的直線有什么位置關(guān)系? 。
、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )
A.0個 B.1個 C.2個 D.3個
。ǘ┨羁疹}:
1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應(yīng)的位置關(guān)系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
。2)L1與L2有且只有一個公共點,則L1與L2 ;
。3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關(guān)系是 。
4、平面內(nèi)有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初一數(shù)學(xué)教案10
教學(xué)目的:
。ㄒ唬┲R目標(biāo):
1.了解正數(shù)和負(fù)數(shù)是怎樣產(chǎn)生的。
2.知道什么是正數(shù)和負(fù)數(shù)。
3.理解數(shù)0表示的量的意義。
(二)能力目標(biāo):
1.體會數(shù)學(xué)符號與對應(yīng)的思想,用正、負(fù)數(shù)表示具有相反意義的量化方法。
2.會用正、負(fù)數(shù)表示具有相反意義的量。
(三)情感態(tài)度與價值觀:
通過師生合作,聯(lián)系實際,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。 教學(xué)重點:知道什么是正數(shù)和負(fù)數(shù),理解數(shù)0表示的量的意義。 教學(xué)難點:理解負(fù)數(shù),數(shù)0表示的量的意義。
教學(xué)方法:師生互動
教學(xué)過程:
一、創(chuàng)設(shè)情境:
1.活動:請兩名同學(xué)分別記錄一周的每天的最高氣溫,老師念,學(xué)生寫: -5℃、3℃、2℃、-1℃、-6℃、7℃、4℃、
比一比,怎樣記錄又快又簡便!
[師]其實,在我們的生活中,運用這樣的符號的`地方很多,這節(jié)課,我們就來學(xué)習(xí)這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負(fù)數(shù)。
二、新課:
1.自然數(shù)的產(chǎn)生、分?jǐn)?shù)的產(chǎn)生。
2.章頭圖。問題見教材。讓學(xué)生思考-3~3℃、凈勝球數(shù)與排名順序、±0.5、-9的意義。
3、正數(shù)、負(fù)數(shù)的定義:我們把以前學(xué)過的0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負(fù)數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。 舉例說明:
3、2、0.5、 等是正數(shù)(也可加上“十”)
。3、-2、-0.5、- 等是負(fù)數(shù)。
4、數(shù)0既不是正,也不是負(fù)數(shù),0是正數(shù)和負(fù)數(shù)的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學(xué)生舉例說明正、負(fù)數(shù)在實際中的應(yīng)用。展示圖片(又見教材p5圖
1.1-2-3)讓學(xué)生觀察地形圖上的標(biāo)注和記錄支出、存入信息的本地某銀行的存折,說出你知道的信息。
三、鞏固提高:練習(xí):課本p5練習(xí)
課時小結(jié):談?wù)勥@節(jié)課的收獲
課后作業(yè):課本p7習(xí)題1.1的第1、2、4、5題。
四、能力提升:在一次數(shù)學(xué)測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數(shù)。
。1)美美得95分,應(yīng)記為多少?
(2)多多被記作一12分,他實際得分是多少?
五、課后反思
初一數(shù)學(xué)教案11
教學(xué)目標(biāo)
(一)教學(xué)知識點
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).
(二)能力訓(xùn)練要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.
3.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識.
(三)情感與價值觀要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的'關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.
2.具有初步的創(chuàng)新精神和實踐能力.
教學(xué)重點
1.體會方程與函數(shù)之間的聯(lián)系.
2.理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).
教學(xué)難點
1.探索方程與函數(shù)之間的聯(lián)系的過程.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系.
教學(xué)方法
討論探索法.
教具準(zhǔn)備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學(xué)過程
、.創(chuàng)設(shè)問題情境,引入新課
[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系.當(dāng)一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標(biāo)即為一元一次方程kx+b=0的解.
現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題。
通過學(xué)生的討論,使學(xué)生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);
(4)必須分解到每個多項式不能再分解為止。
活動5:應(yīng)用新知
例題學(xué)習(xí):
P166例1、例2(略)
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。
活動6:課堂練習(xí)
1.P167練習(xí);
2.看誰連得準(zhǔn)
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進(jìn)行查缺補漏。
活動7:課堂小結(jié)
從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。
活動8:課后作業(yè)
課本P170習(xí)題的第1、4大題。
學(xué)生自主完成
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。
板書設(shè)計(需要一直留在黑板上主板書)
15.4.1提公因式法例題
1.因式分解的定義
2.提公因式法
初一數(shù)學(xué)教案12
教學(xué)目標(biāo)
1、理解并掌握等腰三角形的判定定理及推論
2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系、
教學(xué)重點:
等腰三角形的判定定理及推論的運用
教學(xué)難點:
正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系、
教學(xué)過程:
一、復(fù)習(xí)等腰三角形的性質(zhì)
二、新授:
1、提出問題,創(chuàng)設(shè)情境
出示投影片、某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標(biāo),然后在這棵樹的正南方(南岸A點抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質(zhì)專家測得AC的長度就可知河流寬度、
學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”、
2、引入新課
1)由性質(zhì)定理的題設(shè)和結(jié)論的.變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?
2)引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證、
3)小結(jié),通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱)、強調(diào)此定理是在一個三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”、
4)引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù)、
初一數(shù)學(xué)教案13
一、教學(xué)目標(biāo)
1.通過七巧板的制作,拼擺等活動,進(jìn)一步豐富對平行,垂直及角等有關(guān)內(nèi)容的認(rèn)識,積累數(shù)學(xué)活動經(jīng)驗。
2.能用適當(dāng)?shù)膱D形和語言表示自己的思考結(jié)果。
二、教學(xué)重點和難點
本堂內(nèi)容的重點是七巧板的制作和拼擺,難點是拼圖所要表現(xiàn)的幾何圖形,對已學(xué)過的平行,垂直及角等有關(guān)內(nèi)容的有機聯(lián)系和語言表達(dá)。
三、教學(xué)手段
引導(dǎo)活動討論
引導(dǎo):意在教師講解七巧板的歷史,七巧板制作的方法。
活動:人人參與制作七巧板,拼擺七巧板的圖案。
討論:對自己所拼擺的'圖形與同伴交流,與全班同學(xué)交流(利用多媒體工具)與老師進(jìn)行交流。
四、教學(xué)方法
啟發(fā)式教學(xué)
五、教學(xué)過程
1 創(chuàng)設(shè)情景,引入新課
先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學(xué)生制作一副七巧板,并涂上不同的顏色。
2 合作交流,探索新知
利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學(xué)交流,與老師交流。
(1) 你的拼圖用了什么形狀的板?你想表現(xiàn)什么?
(2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關(guān)系表示出來。
(3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。
通過學(xué)生的展示,教師作適時的評價,樹立榜樣,培養(yǎng)學(xué)生之間的競爭意識。
3 范例教學(xué)
介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發(fā)學(xué)生的創(chuàng)造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發(fā)揮學(xué)生的創(chuàng)造能力、想象能力、合作交流能力(可由附近的同學(xué)四人小組制作完成)。
4 反饋練習(xí)
由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學(xué),用語言表示拼圖所表現(xiàn)的內(nèi)容,與所學(xué)的知識的聯(lián)系,呈現(xiàn)平行,垂直及角的有關(guān)知識。
5 歸納小結(jié)
通過制作七巧板及游戲板進(jìn)一步學(xué)會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關(guān)內(nèi)容的認(rèn)識,積累數(shù)學(xué)活動的經(jīng)驗,提高了空間觀念和觀察、分析、概括表達(dá)的能力。
六、練習(xí)設(shè)計
利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環(huán)境。
七、板書設(shè)計
4.7有趣的七巧板
(一)知識回顧 (三)例題解析 (五)課堂小結(jié)
(二)觀察發(fā)現(xiàn) (四)課堂練習(xí) 練習(xí)設(shè)計
初一數(shù)學(xué)教案14
教學(xué)目標(biāo)
1,通過對數(shù)“零”的意義的探討,進(jìn)一步理解正數(shù)和負(fù)數(shù)的概念;
2,利用正負(fù)數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)
3,進(jìn)一步體驗正負(fù)數(shù)在生產(chǎn)生活實際中的廣泛應(yīng)用,提高解決實際問題的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點:深化對正負(fù)數(shù)概念的理解
知識重點:正確理解和表示向指定方向變化的量
教學(xué)過程:(師生活動)設(shè)計理念
知識回顧與深化回顧:上一節(jié)課我們知道了在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負(fù)數(shù)來表示.這就是說:數(shù)的范圍擴大了(數(shù)有正數(shù)和負(fù)數(shù)之分).那么,有沒有一種既不是正數(shù)又不是負(fù)數(shù)的數(shù)呢?
問題1:有沒有一種既不是正數(shù)又不是負(fù)數(shù)的數(shù)呢?
學(xué)生思考并討論.
。〝(shù)0既不是正數(shù)又不是負(fù)數(shù),是正數(shù)和負(fù)數(shù)的分
界,是基準(zhǔn).這個道理學(xué)生并不容易理解,可視學(xué)生的討論情況作些啟發(fā)和引導(dǎo),下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來表示,零下溫度用負(fù)數(shù)來表示。那么某一天某地的最高溫度是零上7℃,最低溫度是零下5℃時,就應(yīng)該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負(fù)數(shù) .
那么當(dāng)溫度是零度時,我們應(yīng)該怎樣表示呢?(表示為0℃),它是正數(shù)還是負(fù)數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負(fù)數(shù)
問題2:引入負(fù)數(shù)后,數(shù)按照“兩種相反意義的量”來分,可以分成幾類?“數(shù)0耽不是正數(shù),也不是負(fù)數(shù)”也應(yīng)看作是負(fù)數(shù)定義的一部分.在引入
負(fù)數(shù)后,0除了表示一個也沒有以外,還是正數(shù)和負(fù)數(shù)的分界.了解。的這一層意義,也有助于對正負(fù)數(shù)的理解;且對數(shù)的順利擴張和有理毅概念的建立都有幫助。
所舉的例子,要考慮學(xué)生的可接受性.“數(shù)0既不是正數(shù),也不是負(fù)數(shù)”應(yīng)從相反意義的1這個角度來說明.這個問題只要初步認(rèn)識即可,不必深究.
分析問題
解決問題問題3:教科書第6頁例題
說明:這是一個用正負(fù)數(shù)描述向指定方向變化情況的例子, 通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負(fù)數(shù)表示。這種描述在實際生活中有廣泛的應(yīng)用,應(yīng)予以重視。教學(xué)中,應(yīng)讓學(xué)生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進(jìn)出口額的增長率”,就暗示著用正數(shù)來表示增長的量。
歸納:在同一個問題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義(教科書第6頁).
類似的.例子很多,如:
水位上升-3m,實際表示什么意思呢?
收人增加-10%,實際表示什么意思呢?
可視教學(xué)中的實際情況進(jìn)行補充.
這種用正負(fù)數(shù)描述向指定方向變化情況的例子,在實際生活中有廣泛的應(yīng)用,按題意找準(zhǔn)哪種意義的量應(yīng)該用正數(shù)表示是解題的關(guān)。@種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現(xiàn)在不必向?qū)W生提出.
鞏固練習(xí)教科書第6頁練習(xí)
閱讀思考
教科書第8頁閱讀與思考是正負(fù)數(shù)應(yīng)用的很好例子,要花時間讓學(xué)生討論交流
小結(jié)與作業(yè)
課堂小結(jié)以問題的形式,要求學(xué)生思考交流:
1,引人負(fù)數(shù)后,你是怎樣認(rèn)識數(shù)0的,數(shù)0的意義有哪些變化?
2,怎樣用正負(fù)數(shù)表示具有相反意義的量?
。ㄓ谜龜(shù)表示其中一種意義的量,另一種量用負(fù)數(shù)表示;特別地,在用正負(fù)數(shù)表示向指定方向變化的量時,通常把向指定方向變化的量規(guī)定為正數(shù),而把向指定方向的相反方向變化的量規(guī)定為負(fù)數(shù).)
本課作業(yè)
1,必做題:教科書第7頁習(xí)題1.1第3,6,7,8題
2,選做題:教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1,本課主要目的是加深對正負(fù)數(shù)概念的理解和用正負(fù)數(shù)表示實際生產(chǎn)生活中的向指定方向變化的量。
2,“數(shù)0既不是正數(shù),也不是負(fù)數(shù),’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應(yīng)看作是負(fù)數(shù)定義的一部分.在引人負(fù)數(shù)后,除了表示一個也沒有以外,還是正數(shù)和負(fù)數(shù)的分界。了解0的這一層意義,也有助于對正負(fù)數(shù)的理解,且對數(shù)的順利擴張和有理數(shù)概念的建立都有幫助.由于上節(jié)課的重點是建立兩種相反意義量的概念,考慮到學(xué)生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負(fù)數(shù)表示(向指定方向變化的)量的實際應(yīng)用,用這種方式描述的例子很多,要盡量使學(xué)生理解.
4,本設(shè)計體現(xiàn)了學(xué)生自主學(xué)習(xí)、交流討論的教學(xué)理念,教學(xué)中要讓學(xué)生體驗數(shù)學(xué)知識在實際中的合理應(yīng)用,在體驗中感悟和深化知識.通過實際例子的學(xué)習(xí)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
初一數(shù)學(xué)教案15
大家都聽說過一句名言:“世界上不是缺少美,而是缺少發(fā)現(xiàn)美的眼睛”,大家知道這句話是誰說的嗎?不知道沒關(guān)系,大家記住下一句名言就好:“世界上不是缺少數(shù)學(xué),而是缺少發(fā)現(xiàn)數(shù)學(xué)的眼睛——李老師語錄”,那這個著名的李老師是誰呢?遠(yuǎn)在天邊,近在眼前。不要太驚訝,想要簽名的下課來找我就行。
好,那我們接下來就用發(fā)現(xiàn)數(shù)學(xué)的眼睛來看一看,生活中常見的幾何體都有哪些物體,分別是什么形狀?水杯,籃球,冰激凌,金字塔,黑板擦。分別對應(yīng)圓柱,球,圓錐,棱錐,棱柱。其中長方體,正方體是特殊的棱柱。
好了,幾何體我們都了解了,面對這些雜亂無章的'幾何體是不是感覺很亂,接下來我們就給幾何體分分類:
一、常見幾何體分類
1、 按照柱、錐、球分類
圓柱
柱生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱。
錐圓錐
棱錐
2、 按照有無頂點分類
生活中的立體圖形
3、 按照有無曲面分類
二、棱柱(直)
1、 基本概念
(1) 棱:在棱柱中,任何相鄰的兩個面的交線叫做棱。
。2) 側(cè)棱:在棱柱中,相鄰兩個側(cè)面的交線叫做側(cè)棱。
2、 特征
。1) 棱柱的所有側(cè)棱長相等。
。2) 棱柱的上下底面完全相同且都是多邊形。
(3) 棱柱的側(cè)面都是長方形。
。4) n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。
3、 分類
按照底面多邊形的邊數(shù)分類,底面幾邊形就是幾棱柱。
三、圖形的構(gòu)成元素
點:線與線橡膠的地方就是點。
1 線:面與面相交的地方就是線。
面:包圍著體的是面。
2、聯(lián)系
點動成線,線動成面,面動成體。
展開與折疊
一、正方體的展開圖(11種)
1-4-1型:(6種)
2-3-1型(3種)
2-2-2型(1種)
3-3型(
1種)
二、正方體的折疊
展開圖中不出現(xiàn)一字型、田字形、凹字形,2-4型,若有此形狀的展開圖則折不成正方體。
三、總結(jié)規(guī)律:
一線不過四,
田凹應(yīng)棄之;
相間、Z端是對面,
間二、拐角鄰面知。
四、常見幾何體的展開圖
三、截一個幾何體
一、正方體的截面
用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
可能出現(xiàn)的:銳角三角型、等邊、等腰三角形, 正方形、矩形、非矩形的平行四邊形、 非等腰梯形、 等腰梯形、五邊形、六邊形、正六邊形
不可能出現(xiàn):鈍角三角形、直角三角形、直角梯形、正五邊形、七邊形或更多邊形
二、常見幾何體截面
四、從三個方向看物體的形狀
一、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
二、聯(lián)系
主俯長對正,主左高平齊,俯左寬相等。
三、畫法
一看,二畫,三查(尺寸,虛實)
【初一數(shù)學(xué)教案】相關(guān)文章:
初一數(shù)學(xué)教案11-14
【精】初一數(shù)學(xué)教案12-02
【推薦】初一數(shù)學(xué)教案12-03
【熱】初一數(shù)學(xué)教案12-12
初一數(shù)學(xué)教案【精】12-14
初一數(shù)學(xué)教案【熱】12-13
初一數(shù)學(xué)教案上冊11-19
初一數(shù)學(xué)教案[實用]01-22
【薦】初一數(shù)學(xué)教案12-04
【熱門】初一數(shù)學(xué)教案12-12