- 相關(guān)推薦
小學(xué)數(shù)學(xué)概念的創(chuàng)造性教學(xué)
內(nèi)容提要數(shù)學(xué)概念是構(gòu)成數(shù)學(xué)知識的基礎(chǔ)。概念教學(xué)在整個數(shù)學(xué)教學(xué)中起著舉足輕重的作用。筆者在三年的實驗研究中,從概念創(chuàng)造性教學(xué)的教學(xué)目標(biāo)、教學(xué)原則和教學(xué)方法這三方面進(jìn)行了一些探索。本文就在進(jìn)行概念的創(chuàng)造性教學(xué)時,所要遵循的創(chuàng)造性教學(xué)的教學(xué)原則,可以采用的創(chuàng)造性教學(xué)的教學(xué)方法和要完成的創(chuàng)造性教學(xué)的教學(xué)目標(biāo)作一簡要論述。
小學(xué)數(shù)學(xué)概念的創(chuàng)造性教學(xué)是指教師結(jié)合所要教學(xué)的數(shù)學(xué)概念,遵循創(chuàng)造性教學(xué)原則,運用創(chuàng)造性教學(xué)方法,以激發(fā)學(xué)生的創(chuàng)造動機,發(fā)揮學(xué)生的創(chuàng)造潛能,培養(yǎng)學(xué)生的創(chuàng)造性思維能力為目的而進(jìn)行的教學(xué)活動。下面就小學(xué)數(shù)學(xué)概念創(chuàng)造性教學(xué)的教學(xué)目標(biāo)、教學(xué)原則和教學(xué)方法談點兒自己的看法和做法。
一、小學(xué)數(shù)學(xué)概念創(chuàng)造性教學(xué)的教學(xué)目標(biāo)
教學(xué)目標(biāo)是教學(xué)工作的目標(biāo),是教學(xué)的根本。進(jìn)行小學(xué)數(shù)學(xué)概念的創(chuàng)造性教學(xué)首先要完成一般的教學(xué)目標(biāo),如使學(xué)生能正確地理解概念、牢固地掌握概念、正確地運用概念等一些有關(guān)基礎(chǔ)知識、基本技能的教學(xué)目標(biāo),完成這些基本的教學(xué)目標(biāo)是實現(xiàn)創(chuàng)造性教學(xué)的首要前提。在此基礎(chǔ)上,還要完成以下幾項教學(xué)目標(biāo):
1.培養(yǎng)學(xué)生的發(fā)現(xiàn)能力
概念教學(xué)的基本目標(biāo)是幫助學(xué)生形成概念,而學(xué)生形成概念的關(guān)鍵是發(fā)現(xiàn)事物或形的本質(zhì)屬性或規(guī)律。發(fā)現(xiàn)是創(chuàng)造的一種重要形式。現(xiàn)代著名心理學(xué)家布魯納認(rèn)為:“發(fā)現(xiàn)不限于那種尋求人類尚未知曉的事物的行為,正確地說,發(fā)現(xiàn)包括著用自己的頭腦親自獲得知識的一切形式!庇纱丝梢钥闯觯W(xué)生用自己的頭腦去親自獲得知識也是一種發(fā)現(xiàn)。因此,在數(shù)學(xué)教學(xué)中,教師要努力創(chuàng)造條件,給學(xué)生提供自主探索的機會,給學(xué)生充分的思考空間,讓學(xué)生在觀察、實驗、歸納、分析的過程中去理解數(shù)學(xué)概念的形成和發(fā)展過程,進(jìn)行數(shù)學(xué)的再發(fā)現(xiàn)、再創(chuàng)造,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力。
2.培養(yǎng)學(xué)生的創(chuàng)新精神
創(chuàng)新精神是創(chuàng)造力發(fā)展的靈魂和動力。培養(yǎng)學(xué)生的創(chuàng)新精神是開發(fā)學(xué)生創(chuàng)造力最主要和最有效的措施。一個人的創(chuàng)造力能被開發(fā)到什么程度,能否為社會做出創(chuàng)造性的貢獻(xiàn),在很大程度上取決于他是否具備創(chuàng)新精神。如果一個人不想去創(chuàng)造,即使他的智力水平再高,創(chuàng)造力再高,一切也都等于零;而如果他具有愿意為科學(xué)和人類進(jìn)步獻(xiàn)身的高尚品德,那就會給他的創(chuàng)造力發(fā)展提供巨大的精神動力,他就可能會為社會做出創(chuàng)造性的貢獻(xiàn)。因此,在進(jìn)行數(shù)學(xué)概念的創(chuàng)造性教學(xué)時,要特別注意對學(xué)生創(chuàng)新精神的培養(yǎng)。例如可以通過多媒體手段進(jìn)行教學(xué),使學(xué)生對要學(xué)的新概念、新知識感興趣,以激發(fā)學(xué)生的求知欲和好奇心;通過有效的激勵手段,鼓勵學(xué)生大膽質(zhì)疑問難,大膽進(jìn)行聯(lián)想和猜測,以培養(yǎng)學(xué)生的挑戰(zhàn)性和冒險性;通過思想教育,使學(xué)生樹立為社會進(jìn)步做出貢獻(xiàn)的遠(yuǎn)大理想,培養(yǎng)學(xué)生愛祖國、愛人民的優(yōu)良品質(zhì)等。
3.培養(yǎng)學(xué)生的實踐能力
創(chuàng)造是一種實踐活動。實踐為創(chuàng)造提供要求,為創(chuàng)造提供成功的可能,為檢驗創(chuàng)造成功與否提供檢驗的標(biāo)準(zhǔn),因此可以說實踐是創(chuàng)造的基礎(chǔ)和源泉。只有積極參與實踐,才能發(fā)現(xiàn)新問題,提出新見解、新思想、新方法,才能把握創(chuàng)造的機會進(jìn)行成功的創(chuàng)造,提高創(chuàng)造能力。同樣,創(chuàng)造力的提高,會促使一個人把新的思想、新的見解落實到實際中去,在創(chuàng)造活動中養(yǎng)成實踐的習(xí)慣,進(jìn)一步提高創(chuàng)造能力。由此可以看出,培養(yǎng)學(xué)生的實踐能力對于提高學(xué)生的創(chuàng)造力起著至關(guān)重要的作用。這就要求在教學(xué)過程中,教師必須要抓住一切機會去培養(yǎng)學(xué)生的實踐能力,從而達(dá)到提高學(xué)生創(chuàng)造力的目的。例如可以引導(dǎo)學(xué)生從已有的知識出發(fā)去探究新的數(shù)學(xué)知識;可以讓學(xué)生通過實際操作發(fā)現(xiàn)新概念;可以讓學(xué)生用學(xué)到的數(shù)學(xué)概念解決日常生活中的實際問題等。
以上各教學(xué)目標(biāo)不是孤立的,而是互相聯(lián)系、相輔相成、不可分割的。基礎(chǔ)知識、基本技能是創(chuàng)造性教學(xué)的基礎(chǔ),創(chuàng)造性教學(xué)的目標(biāo)則是雙基目標(biāo)發(fā)展的結(jié)果。因此在概念的創(chuàng)造性教學(xué)中,除了要確定雙基目標(biāo)外,還要確定培養(yǎng)創(chuàng)造力的目標(biāo),做到在打基礎(chǔ)中學(xué)創(chuàng)造,在學(xué)創(chuàng)造中鞏固基礎(chǔ),提高創(chuàng)造力。
二、小學(xué)數(shù)學(xué)概念創(chuàng)造性教學(xué)的教學(xué)原則
教學(xué)原則是教學(xué)工作中必須遵循的基本要求。進(jìn)行概念的創(chuàng)造性教學(xué)首先必須要遵循基本的教學(xué)原則,如科學(xué)性和思想性統(tǒng)一的原則、面向全體和因材施教的原則、傳授知識和發(fā)展智力相結(jié)合的原則等,這是因為它們是指導(dǎo)教師開展有效的教學(xué)工作,提高教學(xué)質(zhì)量的一般性原則。其次還要遵循以下幾項教學(xué)原則:
1.主體性原則
主體性原則,就是要尊重學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,在創(chuàng)造性教學(xué)過程中充分發(fā)揮教師和學(xué)生各自的主體精神和主體作用,教師創(chuàng)造性地教,學(xué)生創(chuàng)造性地學(xué),使教、學(xué)的主體共同參與整個教學(xué)過程。教學(xué)是師生雙方的共同活動,從知識水平、學(xué)生的思想品德教育、對學(xué)生心理特點的掌握和教學(xué)規(guī)律的運用來說,教師是教的主體;從教學(xué)是為了實現(xiàn)學(xué)生知識、能力、思想品德的轉(zhuǎn)化來說,學(xué)生是學(xué)的主體。教學(xué)中如果沒有學(xué)生主動的感知、思維,單憑教師的灌輸,學(xué)生的認(rèn)識無法實現(xiàn);如果只有學(xué)生主動的感知、思維,而沒有教師的引導(dǎo),學(xué)生的認(rèn)識同樣無法實現(xiàn)。因此在進(jìn)行創(chuàng)造性教學(xué)時必須遵循主體性原則,因為它是實現(xiàn)創(chuàng)造性教學(xué)的的前提。實施主體性原則要注意:教師要盡量控制自己的活動量,盡可能多地為學(xué)生提供獨立活動的機會、時間和空間;要鼓勵學(xué)生積極參與,激發(fā)學(xué)生創(chuàng)造性學(xué)習(xí)的主動性和積極性;要尊重學(xué)生的人格,喚起學(xué)生的主體意識,強化學(xué)生的自主精神,是學(xué)生真正成為學(xué)習(xí)的主人,進(jìn)而使學(xué)生潛在的創(chuàng)造力得到發(fā)展。
2.探索性原則
探索性原則,就是教師要努力使教學(xué)活動富有探索性,為學(xué)生創(chuàng)設(shè)進(jìn)行觀察、探索、發(fā)現(xiàn)的學(xué)習(xí)環(huán)境,鼓勵學(xué)生質(zhì)疑問難,大膽聯(lián)想,激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)造興趣,引導(dǎo)學(xué)生通過親身體驗獲取新知,把教學(xué)過程轉(zhuǎn)化為學(xué)生自覺進(jìn)行探索新知的過程,使學(xué)生積極主動地在學(xué)習(xí)中體驗探索的樂趣。探索性原則是創(chuàng)造教育培養(yǎng)創(chuàng)造型人才的根本目的決定的。這是因為,傳統(tǒng)的教學(xué)活動以傳授為主,以“告訴”的方式讓學(xué)生“占有”人類已有的知識經(jīng)驗,造成了置學(xué)生于被動地位,只能形成對講授傳播的依賴性和被動性,無法經(jīng)歷探索發(fā)現(xiàn)的過程,沒有求異思維、馳騁想象的機會,抹殺了學(xué)生在求知過程中主動探索、積極思維的潛在能力。而兒童本身存在著創(chuàng)造潛能,需要親歷大膽懷疑、多方設(shè)想、探索發(fā)現(xiàn)、獨立分析和解決問題的過程,才能將創(chuàng)造潛能轉(zhuǎn)化成現(xiàn)實的創(chuàng)造能力。實施探索性原則要注意:教師要精心設(shè)計問題,引導(dǎo)學(xué)生進(jìn)行觀察、實驗、討論、發(fā)現(xiàn);要給予學(xué)生充分的思考時間,重視學(xué)生的思維過程;要鼓勵學(xué)生大膽進(jìn)行聯(lián)想和猜測,發(fā)展學(xué)生的直覺思維。
3.實踐性原則
實踐性原則,就是在教學(xué)中要重視理論聯(lián)系實際,要結(jié)合實例進(jìn)行教學(xué),鼓勵學(xué)生動口、動腦、動手,讓學(xué)生參與到數(shù)學(xué)概念的形成過程;要組織有效的練習(xí),引導(dǎo)學(xué)生運用所學(xué)到的知識去解決實際問題,使學(xué)生獲得運用知識的能力。實踐性原則是創(chuàng)造性教學(xué)的目的所決定的。創(chuàng)造性教學(xué)是為了培養(yǎng)學(xué)生的創(chuàng)造力,而創(chuàng)造力是與實踐活動密不可分的,創(chuàng)造力在實踐活動中得以表現(xiàn),在實踐活動中得到發(fā)展。只有積極參與實踐,才能提高自己的創(chuàng)造力。實施實踐性原則要注意:在教學(xué)中要把所講授的數(shù)學(xué)概念同學(xué)生的生活和社會實際結(jié)合起來,引導(dǎo)學(xué)生聯(lián)系實際的去理解和掌握概念,引導(dǎo)學(xué)生運用所學(xué)到的知識去解決實際問題;在教學(xué)過程中,要想方設(shè)法給學(xué)生提供實踐的機會,鼓勵學(xué)生觀察、思考、質(zhì)疑、想象、動手;特別要注意,凡是學(xué)生能自己想出來的、能講出來的、能做出來的,教師決不能包辦代替。
4.激勵性原則
激勵性原則,就是要幫助學(xué)生實現(xiàn)成功,讓學(xué)生在學(xué)和做中能經(jīng)常感受到成功的喜悅和愉悅,認(rèn)識到自身的價值,以此來激勵學(xué)生的求知欲和成就感,從而培養(yǎng)學(xué)生的自尊心和自信心,增強學(xué)生的創(chuàng)造動機和創(chuàng)造熱情,使學(xué)生能不斷地追求新知,積極進(jìn)取,勇于創(chuàng)新。成功是一個人的基本需要之一。對小學(xué)生來講,成功對他樹立自信心是非常重要的。心理學(xué)實驗表明:“一個人只要體驗一次成功的欣慰,便會激起多次追求成功的欲望!苯虒W(xué)中經(jīng)常激勵學(xué)生并幫助他們經(jīng)常體驗成功,能使他們形成積極進(jìn)取的心態(tài),激發(fā)他們的創(chuàng)造熱情,堅定他們的創(chuàng)新意志,進(jìn)而形成穩(wěn)定的創(chuàng)造動機。這也是在進(jìn)行概念的創(chuàng)造性教學(xué)時要遵循激勵性原則的原因。實施激勵性原則要注意:教師要積極尋找學(xué)生的成功和進(jìn)步,發(fā)現(xiàn)其閃光點,并及時給予鼓勵;對學(xué)生的不足之處,要采取寬容態(tài)度,不要過多指責(zé);要容忍學(xué)生幼稚的或不成熟的想法,尊重并激勵學(xué)生的創(chuàng)新精神;要創(chuàng)造機會使學(xué)生能經(jīng)常體驗成功,使學(xué)生認(rèn)識到自己的創(chuàng)造潛能。
以上各教學(xué)原則是一個密切聯(lián)系的統(tǒng)一的整體。在創(chuàng)造性教學(xué)過程中,一定要深刻理解這些教學(xué)原則的內(nèi)在涵義,結(jié)合學(xué)生和教材的特點,互相配合,發(fā)揮這些原則的整體作用。
三、小學(xué)數(shù)學(xué)概念創(chuàng)造性教學(xué)的教學(xué)方法
(一)引入概念的教學(xué)
概念的引入是概念教學(xué)的第一步,它是形成概念的基礎(chǔ)。引入這個環(huán)節(jié)設(shè)計、組織的好,后面的教學(xué)活動就能順利展開,學(xué)生就會對教師所提供的感性材料進(jìn)行分析、比較,繼而順利地形成概念。
1.引入概念的方法
。1)實例引入
實例引入是指利用學(xué)生的生活實際和所熟悉的事物及實例,從具體的感知引出概念。數(shù)學(xué)是對客觀世界數(shù)量關(guān)系和空間關(guān)系的一種抽象,因此在教學(xué)中要盡可能的使抽象的數(shù)學(xué)概念用學(xué)生所接觸過的、恰當(dāng)?shù)膶嵗M(jìn)行引入。如教學(xué)“分?jǐn)?shù)的意義”時,由于這個概念比較抽象,因此不能直接給出“分?jǐn)?shù)”的定義,必須從具體到抽象幫助學(xué)生逐步形成“分?jǐn)?shù)”的概念。教學(xué)時,可以通過列舉大量的、學(xué)生所熟悉的日常生活中平均分配物品的實例,如平分一張紙、一個圓、一條線段、4個蘋果、6面小旗等,來說明“單位1”和“平均分”,然后再用“單位1”和“平均分”引出“分?jǐn)?shù)”這個概念。
。2)舊知引入
舊知引入是指利用學(xué)生已掌握的概念引出新概念。數(shù)學(xué)概念之間有著非常密切的聯(lián)系,許多新概念是建立在已有概念的基礎(chǔ)上,是舊概念的延伸和發(fā)展。利用學(xué)生已有概念引申、推導(dǎo)出新概念,可以強化新舊知識間的內(nèi)在聯(lián)系,幫助學(xué)生弄清知識的來龍去脈和前因后果,幫助學(xué)生建立概念體系,使學(xué)生學(xué)到的知識是系統(tǒng)的、完整的。利用這種方法引入,還能充分調(diào)動學(xué)生學(xué)習(xí)的積極性、主動性。如講小數(shù)乘以整數(shù)或分?jǐn)?shù)乘以整數(shù)的意義時,可以從整數(shù)乘法的意義引入;講公約數(shù)、最大公約數(shù)的概念時,可以從約數(shù)這個已有概念引入。
。3)計算引入
計算引入是指通過計算發(fā)現(xiàn)問題,通過計算引出概念。教材中有些概念既不便用實例引入,又與已有概念聯(lián)系不大,就可以通過對運算的觀察分析,發(fā)現(xiàn)其中蘊含的本質(zhì)特征,揭示數(shù)量或形的本質(zhì)屬性,達(dá)到引出概念的目的。如教學(xué)“倒數(shù)的認(rèn)識”時,可以先給出幾個乘積是1的兩個數(shù)相乘的算式,如“3/8×8/3 7/15×15/7 3×1/3 1/80×80”,讓學(xué)生計算出結(jié)果,再觀察、分析,從中發(fā)現(xiàn)規(guī)律,繼而引出“倒數(shù)”定義。
。4)聯(lián)想引入
聯(lián)想引入是指依據(jù)客觀事物之間的相互聯(lián)系,由一事物想到另一事物的引入方法。由于數(shù)學(xué)知識間存在著類似、平行、遞進(jìn)、對比、從屬、因果等關(guān)系,這就使學(xué)生的大腦能將兩個看似互不相及的知識聯(lián)系起來,使學(xué)生的思維像展翅的雄鷹在知識的天空中翱翔。教學(xué)中啟發(fā)學(xué)生展開豐富的想象,引發(fā)多端的聯(lián)想,會使學(xué)生的創(chuàng)造性思維能力在自由聯(lián)想的天地中獲得最大發(fā)展。如在教學(xué)“百分?jǐn)?shù)”時,上課伊始就給學(xué)生提出這節(jié)課要學(xué)習(xí)“百分?jǐn)?shù)”,要求學(xué)生根據(jù)課題進(jìn)行聯(lián)想,學(xué)生依據(jù)自己的直覺大膽想到“百分?jǐn)?shù)與分?jǐn)?shù)有關(guān)”、“百分?jǐn)?shù)與百有關(guān)”、“百分?jǐn)?shù)可能是一種特殊的分?jǐn)?shù)”等,然后再引導(dǎo)學(xué)生學(xué)習(xí)新課。這樣引入,既可提高學(xué)生的學(xué)習(xí)興趣,又能使學(xué)生的創(chuàng)造性思維得到發(fā)展。
2.引入概念的教學(xué)中應(yīng)注意的問題
。1)引入概念不能局限于某一種方法,要依據(jù)教材的內(nèi)容特點和學(xué)生的認(rèn)知規(guī)律,選擇適當(dāng)?shù)囊敕椒。引入概念,它的任?wù)并非是單一的,所起的作用也不是唯一的,因此在教學(xué)中所采用的引入方法往往是各種方法的協(xié)調(diào)運用。如教學(xué)“分?jǐn)?shù)的基本性質(zhì)”,既可以用“舊知引入”,即根據(jù)除法與分?jǐn)?shù)之間的關(guān)系,利用“商不變的規(guī)律”引入;也可以用“計算引入”,即讓分?jǐn)?shù)的分子和分母都乘以或都除以相同的數(shù)(零除外),通過計算,發(fā)現(xiàn)分?jǐn)?shù)的大小不變,從而達(dá)到引入的目的;又可利用“聯(lián)想引入”,讓學(xué)生對課題展開聯(lián)想,引入新課;還可以先采用“聯(lián)想引入”,再采用“舊知引入”。
(2)要適當(dāng)?shù)倪\用變式。變式就是變換概念的非本質(zhì)屬性,突出本質(zhì)屬性,從而促進(jìn)學(xué)生對概念的正確理解。在進(jìn)行概念的引入教學(xué)時,往往由于教師所提供的感性材料的某些片面性,會使學(xué)生忽略對事物本質(zhì)屬性的認(rèn)識,影響學(xué)生數(shù)學(xué)概念的形成。這就要求教師在舉例或使用教具時,要適當(dāng)?shù)倪\用變式。如使用角、三角形、平行四邊形、長方形、正方形、梯形、長方體、正方體、圓柱體、圓錐體等教具時,不能總是固定在一般位置上,而要采取變式的方法,變換教具的方位,然后再引導(dǎo)學(xué)生分析不同事物的各種性質(zhì),找出同類事物的共同的本質(zhì)特征,這樣學(xué)生才能不受事物的非本質(zhì)屬性(方位不同)的影響,正確的理解和掌握概念。
(二)形成概念的教學(xué)
形成概念的教學(xué)是整個概念教學(xué)過程中至關(guān)重要的一步。概念的形成是通過對具體事物的感知、辨別而抽象、概括出概念的過程,因此學(xué)生形成概念的關(guān)鍵就是發(fā)現(xiàn)事物或形的本質(zhì)屬性或規(guī)律。
1.形成概念的方法
(1)比較發(fā)現(xiàn)
比較發(fā)現(xiàn)是指通過比較事物之間的相同點和不同點,從而總結(jié)出本質(zhì)屬性或規(guī)律。這種方法是針對事物之間的異同點進(jìn)行探索,能提供對事物較為全面的認(rèn)識,是一種重要的科學(xué)發(fā)現(xiàn)方法。運用這種方法可以使學(xué)生正確認(rèn)識數(shù)學(xué)知識間的異同和關(guān)系,防止知識間的割裂與混淆,使學(xué)生更好的理解和掌握數(shù)學(xué)概念。
如教學(xué)“質(zhì)數(shù)和合數(shù)”時,先給出一些自然數(shù),讓學(xué)生分別找出這些數(shù)的所有約數(shù),在比較每個數(shù)的約數(shù)的個數(shù);然后根據(jù)約數(shù)的個數(shù)把這些數(shù)進(jìn)行分類,①只有一個約數(shù)的,②只有1和它本身兩個約數(shù)的,③除了1和它本身,還有別的約數(shù)的,即約數(shù)有三個或三個以上的;最后引導(dǎo)學(xué)生根據(jù)三類數(shù)的不同特點,總結(jié)出“質(zhì)數(shù)”和“合數(shù)”的定義。
。2)類比發(fā)現(xiàn)
類比發(fā)現(xiàn)是指根據(jù)兩個或兩類事物在某些屬性上都相同或相似,聯(lián)想或猜想它們的其他屬性也可能相同或相似,繼而得到新的結(jié)論。它是依據(jù)客觀事物或?qū)ο笾g存在的普遍聯(lián)系━━相似性,進(jìn)行猜測得到結(jié)論的發(fā)現(xiàn)方法,它可以使學(xué)生明確知識間的聯(lián)系,建立概念系統(tǒng)。教學(xué)中適當(dāng)?shù)貙W(xué)生進(jìn)行“類比發(fā)現(xiàn)”的訓(xùn)練,是培養(yǎng)學(xué)生創(chuàng)造性思維的一種重要手段。
例如:教學(xué)“比的基本性質(zhì)”時,引導(dǎo)學(xué)生根據(jù)比與分?jǐn)?shù)和除法之間的關(guān)系,即比的前項相當(dāng)于分?jǐn)?shù)的分子或除法中的被除數(shù),比號相當(dāng)于分?jǐn)?shù)線或除號,后項相當(dāng)于分母或除數(shù),比值相當(dāng)于分?jǐn)?shù)值或商;再根據(jù)學(xué)習(xí)分?jǐn)?shù)時學(xué)到了分?jǐn)?shù)的基本性質(zhì)和除法中有商不變的規(guī)律,大膽進(jìn)行猜測,在“比”這部分知識中是不是也有一個比值不變的規(guī)律;最后通過驗證,得到“比的基本性質(zhì)”。
。3)歸納發(fā)現(xiàn)
歸納發(fā)現(xiàn)是指引導(dǎo)學(xué)生對大量的個別材料進(jìn)行觀察、分析、比較、總結(jié),從特殊中歸納出一般的帶有普遍性的規(guī)律或結(jié)論。歸納發(fā)現(xiàn)是一種不完全歸納,但它仍能從特殊事例中發(fā)現(xiàn)該類事物的一般規(guī)律,因此這種方法也是一種具有創(chuàng)造性的發(fā)現(xiàn)方法。教學(xué)中可以引導(dǎo)學(xué)生通過對具體實例的直接觀察,進(jìn)行歸納推理,得出結(jié)論;也可以讓學(xué)生對實際例子進(jìn)行分析,歸納出結(jié)論。
例如在講“乘法分配律”時,先讓學(xué)生計算:
、伲32+25)×4 32×4+25×4
、 (64+12)×3 64×3+12×3
計算后很容易發(fā)現(xiàn)每組中兩個算式的結(jié)果相同。再引導(dǎo)學(xué)生觀察、分析,可以看出左邊算式是兩個數(shù)的和與一個數(shù)相乘,右邊算式是兩個加數(shù)分別與這個數(shù)相乘,再把兩個積相加。雖然兩個算式不同,但結(jié)果相同,然后就可以引導(dǎo)學(xué)生歸納總結(jié)出“乘法分配律”。
。4)操作發(fā)現(xiàn)
操作發(fā)現(xiàn)是指講授新的知識前,教師要求學(xué)生制作或給學(xué)生提供學(xué)具,上課時學(xué)生按照教師的要求進(jìn)行操作、實驗,使學(xué)生主動地、獨立地發(fā)現(xiàn)事物的本質(zhì)屬性或規(guī)律。操作是一個眼、手、腦等多種器官協(xié)調(diào)的活動。讓學(xué)生動手操作去發(fā)現(xiàn)概念,可以開發(fā)學(xué)生的右腦功能,使學(xué)生的左腦和右腦協(xié)調(diào)發(fā)展;利用操作發(fā)現(xiàn)還能充分體現(xiàn)以學(xué)生為主體,教師為主導(dǎo)的教學(xué)思想;能使學(xué)生經(jīng)歷知識產(chǎn)生與發(fā)展的過程,使學(xué)生經(jīng)過親身實踐,在探求知識的過程中揭示規(guī)律,建立概念,掌握新知。
如講解“三角形的面積計算公式”時,讓學(xué)生那出課前準(zhǔn)備好的不同的三角形(任意三角形、直角三角形、直角等腰三角形等),分組進(jìn)行實驗操作,拼擺出平行四邊形、長方形或者正方形,然后找出原來三角形與所拼成圖形各部分之間的關(guān)系,再根據(jù)它們的關(guān)系和所拼成圖形的面積計算公式,就可以推導(dǎo)出“三角形的面積計算公式”。
。5)嘗試發(fā)現(xiàn)
嘗試發(fā)現(xiàn)是指在教學(xué)過程中,教師不直接把現(xiàn)成的結(jié)論告訴學(xué)生,而是在教師的指導(dǎo)下,讓學(xué)生進(jìn)行嘗試活動,使學(xué)生在嘗試中學(xué)習(xí),在嘗試中發(fā)現(xiàn),在嘗試中成功。嘗試是人們認(rèn)識客觀事物尤其是未知事物的一種方式。許多發(fā)明創(chuàng)造都是通過嘗試而成功的。教學(xué)中讓學(xué)生嘗試著去進(jìn)行發(fā)現(xiàn),成功了可以使學(xué)生了解知識的產(chǎn)生發(fā)展過程,更好的理解和掌握概念;如果失敗,則可引導(dǎo)學(xué)生發(fā)現(xiàn)自己的錯誤,使學(xué)生了解錯誤產(chǎn)生的根源,為下一步的嘗試成功打下基礎(chǔ)。
如教學(xué)“帶分?jǐn)?shù)乘法”時,出示“”,讓學(xué)生進(jìn)行嘗試計算,學(xué)生運用已有知識做出了以下幾種解答:
然后讓學(xué)生對幾種方法進(jìn)行評價,發(fā)現(xiàn)每種方法的優(yōu)點及不足,最后總結(jié)出一般的帶分?jǐn)?shù)乘法的計算法則。
2.形成概念的教學(xué)中應(yīng)注意的問題
。1)要適當(dāng)運用對比。對于容易混淆的新舊概念,要通過分析、對比找出它們的異同點,既要找到它們的內(nèi)在聯(lián)系,又要找到它們的根本區(qū)別。例如,在學(xué)習(xí)“反比例”的意義時,“正比例”的意義往往影響學(xué)生對“反比例”意義的理解;也可能出現(xiàn)學(xué)生學(xué)習(xí)了“反比例”的意義后,而干擾學(xué)生對“正比例”的理解與掌握。這就需要及時地引導(dǎo)學(xué)生對這兩個概念進(jìn)行對比,找出兩個概念的相同點(它們都是表示兩個數(shù)量之間的一種關(guān)系),以及它們的不同點(“正比例”是在比值一定的情況下兩個數(shù)量之間的關(guān)系,“反比例”則是在積一定的情況下兩個數(shù)量之間的關(guān)系),這樣學(xué)生就能清晰地建立“反比例”的概念,而不會與“正比例”產(chǎn)生混淆。
(2)要及時作出言語概括。數(shù)學(xué)中的有些概念是給予了科學(xué)的定義,而有些概念則不給定義,是通過描述或舉例說明的方法給出的。在形成概念的教學(xué)過程中,需要把所學(xué)概念準(zhǔn)確、精煉、及時地概括出來,使其條理化,便于學(xué)生記憶。在進(jìn)行言語概括時,注意要讓學(xué)生動腦總結(jié),教師不要包辦代替;總結(jié)準(zhǔn)確的要加以肯定,予以表揚,不準(zhǔn)確的要及時糾正,予以鼓勵。進(jìn)行言語概括還要注意適時,要根據(jù)知識的內(nèi)在聯(lián)系和學(xué)生的認(rèn)知水平,在學(xué)生豐富了感性認(rèn)識后,順?biāo)浦鄣亟沂靖拍睿邕^早地概括出概念,學(xué)生就會對概念死記硬背,使概念的掌握流于形式;過晚就起不到組織、整理概念的作用,達(dá)不到傳授知識、培養(yǎng)能力的目的。
。ㄈ┻\用概念的教學(xué)
概念的形成是一個由個別到一般的過程,而概念的運用則是一個由一般到個別的過程,它們是學(xué)生掌握概念的兩個階段。通過運用概念解決實際問題,可以加深、豐富和鞏固學(xué)生對數(shù)學(xué)概念的掌握,并且在概念運用過程中也有利于培養(yǎng)學(xué)生思維的深刻性、靈活性、敏捷性、批判性和獨創(chuàng)性等等,同時也有利于培養(yǎng)學(xué)生的實踐能力。
1.運用概念的方法
(1)復(fù)述概念或根據(jù)概念填空。例如:
、偈裁唇凶霰鹊幕拘再|(zhì)?(復(fù)述比的基本性質(zhì))
、诎褑挝弧1”( )分成若干份,表示( )的數(shù),叫做分?jǐn)?shù)。(填關(guān)鍵詞語)
。2)運用概念進(jìn)行判斷。例如:
、倥袛嗾`:
a.含有未知數(shù)的式子叫做方程。
b.“32+X=69”是方程。
、谶x擇:下面哪些方程,哪些不是方程?為什么?
4+3X=10 6+2X 7-X>3
17-8=9 8X=0 18÷X=2
。3)運用概念進(jìn)行推理。例如:
、偬羁眨
a.如果a和b的最小公倍數(shù)是ab,那么a和b是( )。
b.奇數(shù)+奇數(shù)=( ) 奇數(shù)×奇數(shù)=( )
奇數(shù)+偶數(shù)=( ) 奇數(shù)×偶數(shù)=( )
偶數(shù)+偶數(shù)=( ) 偶數(shù)×偶數(shù)=( )
、谂袛啵
a.如果ab=7,那么a和b成反比例。
b.一個自然數(shù),不是質(zhì)數(shù)就是合數(shù)。
2.運用概念的教學(xué)中應(yīng)注意的問題
教學(xué)中主要是通過練習(xí)達(dá)到運用概念的目的的。練習(xí)是使學(xué)生掌握基礎(chǔ)知識和技能,培養(yǎng)和發(fā)展學(xué)生思維能力的重要手段。練習(xí)時需要注意以下幾點:
。1)練習(xí)的目的要明確。在練習(xí)時必須明確每項練習(xí)的目的,使每項練習(xí)都突出重點,充分體現(xiàn)練習(xí)的意圖,做到有的放矢,使練習(xí)真正有助于學(xué)生理解新學(xué)概念,有利于發(fā)展學(xué)生的思維。如為了幫助學(xué)生鞏固新學(xué)概念和形成基本技能,可以設(shè)計針對性練習(xí);為了幫助學(xué)生克服定式的干擾,進(jìn)一步明確概念的內(nèi)涵和外延,可以設(shè)計變式練習(xí);為了幫助學(xué)生分清容易混淆的概念,可以設(shè)計對比練習(xí);為了幫助學(xué)生擴展知識的應(yīng)用范圍,加深學(xué)生對新學(xué)概念的理解,培養(yǎng)學(xué)生的創(chuàng)造性思維,可以設(shè)計開放性練習(xí);為了幫助學(xué)生溝通新學(xué)概念與其他知識的橫向、縱向聯(lián)系,促進(jìn)概念系統(tǒng)的形成,培養(yǎng)學(xué)生綜合運用知識的能力,可以設(shè)計綜合性練習(xí)等。
(2)練習(xí)的層次要清楚。小學(xué)生認(rèn)識事物不能一次完成,需要一個逐步深化和提高的過程。因此練習(xí)時要按照由簡到繁、由易到難、由淺入深的原則,逐步加深練習(xí)的難度。如學(xué)過“商不變的規(guī)律”后,可以安排以下三個層次的練習(xí):
a. 90÷30=(90×□)÷(30×2) 15600÷1300=156÷□
這一層是基本練習(xí),它是剛學(xué)完新課之后的單項的、帶有模仿性的練習(xí),它可以幫助學(xué)生鞏固知識,形成正確的認(rèn)知結(jié)構(gòu)。
b. 根據(jù)72÷9=8,說出下面各題的結(jié)果:
720÷90= 7200÷900= 72000÷9000=
這一層是發(fā)展練習(xí),它是在學(xué)生已基本掌握了概念和初步形成一定的技能之后的練習(xí),它可以幫助學(xué)生形成熟練的技能技巧。
c. 填空:
。1200×4)÷(400×□)=3
(1200÷5)÷(400○□)=3
。1200○□)÷(400○□)=3
這一層是綜合練習(xí),它可以使學(xué)生進(jìn)一步深化概念,提高解題的靈活性,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力,實現(xiàn)由技能到能力的轉(zhuǎn)化。
(3)要注意引導(dǎo)學(xué)生形成概念系統(tǒng)。數(shù)學(xué)是一門結(jié)構(gòu)性很強的學(xué)科,任何一個數(shù)學(xué)概念都存在于一定的系統(tǒng)之中,并與其它有關(guān)概念有著區(qū)別與聯(lián)系。因此在進(jìn)行運用概念的教學(xué)時,要注意引導(dǎo)學(xué)生將所獲得的每一新概念及時地納入相應(yīng)的概念系統(tǒng),這樣新舊概念才能融會貫通,才能真正透徹地理解新概念,才能使相關(guān)聯(lián)的概念形成概念系統(tǒng)。這樣做也有利于學(xué)生所獲得的概念的保持與運用,有利于學(xué)生概念系統(tǒng)的形成,有利于學(xué)生認(rèn)知系統(tǒng)結(jié)構(gòu)的形成。如在學(xué)過圓柱體體積計算公式后,可以通過練習(xí),聯(lián)系以前學(xué)過的長方體、正方體等形體的體積計算公式,通過對比,可以發(fā)現(xiàn)這些形體的體積計算公式可概括為“底面積×高”。這樣就溝通了知識間的內(nèi)在聯(lián)系,鞏固了這一類概念的系統(tǒng)知識。
教學(xué)方法是教師為完成教學(xué)任務(wù)所采用的手段。在進(jìn)行概念的創(chuàng)造性教學(xué)時,要善于綜合使用各種方法,把它們有機地結(jié)合起來,使課堂上有講有練,有問有答,既有教師的啟發(fā)、引導(dǎo)、講解、演示,又有學(xué)生的看書、質(zhì)疑、討論、操作。這樣才能使學(xué)生主動地、創(chuàng)造性地學(xué)習(xí),真正的培養(yǎng)學(xué)生的創(chuàng)造力。
【小學(xué)數(shù)學(xué)概念的創(chuàng)造性教學(xué)】相關(guān)文章:
淺談小學(xué)數(shù)學(xué)概念教學(xué)08-07
小學(xué)數(shù)學(xué)概念的教學(xué)論文05-31
例談小學(xué)數(shù)學(xué)概念的教學(xué)08-05
小學(xué)數(shù)學(xué)概念教學(xué)與思維訓(xùn)練08-07
小學(xué)數(shù)學(xué)概念教學(xué)培訓(xùn)心得08-22
關(guān)于數(shù)學(xué)概念教學(xué)08-17
如何有效進(jìn)行小學(xué)數(shù)學(xué)概念教學(xué)08-07