初一上冊數(shù)學有理數(shù)教案(9篇)
作為一位不辭辛勞的人民教師,通常會被要求編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。教案要怎么寫呢?下面是小編為大家收集的初一上冊數(shù)學有理數(shù)教案,希望能夠幫助到大家。
初一上冊數(shù)學有理數(shù)教案1
教學目的:
1.了解計算器的性能,并會操作和使用;
2.會用計算器求數(shù)的平方根;
重點:用計算器進行數(shù)的加、減、乘、除、乘方和開方的計算;
難點:乘方和開方運算;
教學過程:
1.計算器的使用介紹(科學計算器)
2.用計算器進行加、減、乘、除、乘方、開方運算
例1用計算器求下列各式的`值.
(1)(-3.75)+(-22.5) (2)51.7(-7.2)
解(1)
(-3.75)+(-22.5)=-26.25
(2)
51.7(-7.2)=-372.24
說明輸入數(shù)據(jù)時,按鍵順序與寫這個數(shù)據(jù)的順序完全相同,但輸入負數(shù)時,符號轉(zhuǎn)換鍵要放在數(shù)據(jù)之后鍵入.
隨堂練習
用計算器求值
1.9.23+10.2 2.(-2.35)×(-0.46)
答案1.37.8 2.1.081
初一上冊數(shù)學有理數(shù)教案2
〖教學目的〗
〖知識與技能目標:〗理解有理數(shù)減法的意義。
〖過程與方法:〗會進行有理數(shù)減法運算
〖情感態(tài)度與價值觀:〗
有意識培養(yǎng)學生學習數(shù)學的信心和克服困難的勇氣,從中體味成功的快樂.
〖教學重點、難點:〗重點:異號兩數(shù)相減。難點:異號兩數(shù)相減。
〖教學方法:〗引導發(fā)現(xiàn)法
〖教具準備:〗尺、小黑板。
〖教學過程:〗
、.復習提問:
1.敘述有理數(shù)加法法則。
2.兩個有理數(shù)的和一定大于每一個加數(shù)嗎?
3.10比3大多少?10比-3大多少?-10比3大多少?如何計算?
4.3-10有意義嗎?它應當?shù)扔诙嗌?
注:問2是要向?qū)W生強調(diào),兩數(shù)的.和不一定大于每一個加數(shù),一個數(shù)加一個非零的有理數(shù),其和可能增加也可能減少。問3是向?qū)W生說明求一個數(shù)比另一個數(shù)大多少在有理數(shù)范圍內(nèi)同樣要用減法運算。問2和問3都是為了引入新課而設計的。
、.新課講解:
1.由問2、問3講解有理數(shù)減法的意義。
在正有理數(shù)范圍內(nèi)3-10是沒有意義的,因為3比10小,問3比10大多少,問題的本身就有問題,但引入負數(shù)就不同了。如果你有3元錢向售貨員買了10元的物品,如果售貨員讓你先把物品拿走,那么你將欠售貨員7元。這件事實如用算式表達,即3-10=-7。
由實際運算的例子歸納有理微減法法則。
考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,
(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。
等式左邊的運算結(jié)果,用減法意義求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或畫數(shù)軸,讓學生觀察得出?疾煲陨嫌嬎愫。提問:減法是否都可轉(zhuǎn)化為加法計算?啟發(fā)學生自己得出有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。
3.講解例題:
(l)補充例題:問15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?
解:∵15-5=10,∴15℃比5℃高10℃;
∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;
∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃
比15℃低20℃。
(2)教科書例1、例2。
、.做一做
課堂練習:教科書第82頁練習第1~3題。
、.課時小結(jié)
有理數(shù)減法的意義。
、.課后作業(yè)
1.習題2.6A組第1~9題,B組選做。
《2.5有理數(shù)的減法》同步練習
2.(題型一)李明的練習冊上有這樣一道題:計算|(-3)+_|,其中“_”是被墨水污染而看不到的一個數(shù),他翻看了后邊的答案得知該題的計算結(jié)果為6,那么“_”表示的數(shù)應該是.
3.(考點一)計算:(1)-2- (+10);
(2)0-(-3.6);
(3)(-30)-(-6)-(+6)-(-15);
《2.5有理數(shù)的減法》測試
16.下表記錄了七年級(1)班一個組學生的體重與標準體重的差(正號表示比標準體重重,負號表示比標準體重輕),標準體重是50 kg.
姓名小明小丁小麗小文小天小樂
體重與標準體重的差(kg)-5+3-7+4+60
(1)誰最重?誰最輕?
(2)最重的比最輕的重多少千克?
初一上冊數(shù)學有理數(shù)教案3
教學目標:
知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能夠按要求對給定的有理數(shù)進行分類。
過程與方法:通過本節(jié)的學習,培養(yǎng)學生正確的分類討論觀點和分類能力。
情感、態(tài)度、價值觀:通過本節(jié)課的學習,體驗成功的喜悅,保持學好數(shù)學的信心。
教學重點:掌握有理數(shù)的兩種分類方法
教學難點:給定的數(shù)字將被填入它所屬的集合中
教學方法:問題導向法
學習方法:自主探究法
一、形勢歸納
小學我們學了整數(shù)和分數(shù),上節(jié)課我們學了正數(shù)和負數(shù)。誰能快速提出以下問題?
1.有以下數(shù)字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將以上數(shù)字填入以下兩組:正整數(shù)集{}和負整數(shù)集{}。你填完了嗎?
(2)將以上數(shù)字填入以下兩個集合:整數(shù)集合{}和分數(shù)集合{}。你填完了嗎?
稱整數(shù)和分數(shù)為有理數(shù)。(指點題,板書)
二、自學指導
學生自學課本,根據(jù)課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
附:自學提綱:
1.___________、____、_______統(tǒng)稱為整數(shù),
2._______和_________統(tǒng)稱為分數(shù)
3.____ ______統(tǒng)稱為有理數(shù),
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù): 、分數(shù):;正整數(shù):、負整數(shù): 、正分數(shù): 、負分數(shù):.
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發(fā)動學生進行評價、補充、完善,教師根據(jù)每個題目的展示情況進行必要的'講解和強調(diào);
3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關(guān)鍵點予以強調(diào)。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結(jié)果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據(jù)需要進行重點強調(diào)。
1.整數(shù)可分為:_____、______和_______,分數(shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.
2.判斷下列說法是否正確,并說明理由。
(1)有理數(shù)包括有整數(shù)和分數(shù).
(2)0.3不是有理數(shù).
(3)0不是有理數(shù).
(4)一個有理數(shù)不是正數(shù)就是負數(shù).
(5)一個有理數(shù)不是整數(shù)就是分數(shù)
3.所有的正整數(shù)組成正整數(shù)集合,所有負整數(shù)組成負整數(shù)集合,依次類推有正數(shù)集合、負數(shù)集合、整數(shù)集合、分數(shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內(nèi),將各數(shù)用逗號分開):
楊桂花:1.2.1有理數(shù)教學設計
正數(shù)集合:{ …}負數(shù)集合:{ …}
正整數(shù)集合:{ …}負分數(shù)集合:{ …}
4.下列說法正確的是( )
A.0是最小的正整數(shù)
B.0是最小的有理數(shù)
C.0既不是整數(shù)也不是分數(shù)
D. 0既不是正數(shù)也不是負數(shù)
5、下列說法正確的有( )
(1)整數(shù)就是正整數(shù)和負整數(shù)(2)零是整數(shù),但不是自然數(shù)(3)分數(shù)包括正分數(shù)和負分數(shù)(4)正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)(5)一個有理數(shù),它不是整數(shù)就是分數(shù)
五、總結(jié)與反思:通過本節(jié)課的學習,你有什么收獲?
六、作業(yè):必做題:課本14頁:1、9題
初一上冊數(shù)學有理數(shù)教案4
教學目標
1、知道有理數(shù)混合運算的運算順序,能正確進行有理數(shù)的混合運算;
2、會用計算器進行較繁雜的有理數(shù)混合運算。
教學重點
1、有理數(shù)的混合運算;
2、運用運算律進行有理數(shù)的混合運算的簡便計算。
教學難點
運用運算律進行有理數(shù)的混合運算的簡便計算。
有理數(shù)的混合運算的運算順序
也就是說,在進行含有加、減、乘、除的`混合運算時,應按照運算級別從高到低進行,因為乘方是比乘除高一級的運算,所以像這樣的有理數(shù)的混合運算,有以下運算順序:
先乘方,再乘除,最后加減。如果有括號,先進行括號內(nèi)的運算。
你會根據(jù)有理數(shù)的運算順序計算上面的算式嗎?
2、8有理數(shù)的混合運算:同步練習
1、有依次排列的3個數(shù):2,9,7,對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產(chǎn)生一個新數(shù)串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產(chǎn)生一個新數(shù)串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問:從數(shù)串2,9,7開始操作第一百次以后所產(chǎn)生的那個新數(shù)串的所有數(shù)之和是。
《2、8有理數(shù)的混合運算》課后訓練
1、興旺肉聯(lián)廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內(nèi)溫度上升4 ℃,現(xiàn)有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關(guān)上庫門4小時后,肉的溫度是多少攝氏度?
初一上冊數(shù)學有理數(shù)教案5
《1.2有理數(shù)》教學設計
【學習目標】:
1、掌握有理數(shù)的 概念,會對有理數(shù)按一定標準進行分類,培養(yǎng)分類能力;
2、了解分類的標準 與集合的含義;
3、體驗分類是數(shù)學上常用的處理問題方法;
【學習重點】:正確理解有理數(shù)的概念
【學習難點】:正確理解分類的標準和按照一定標準分類
《1.2.1有理數(shù)》同步練習含答案
5.對-3.14,下面說法正確的是(B)
A.是負數(shù),不是分數(shù)
B.是負數(shù),也是分數(shù)
C.是分數(shù),不是有理數(shù)
D.不是分數(shù),是有理數(shù)
《1.2有理數(shù)》同步練習含答案解析
8.如果a與1互為相反數(shù),則|a|=( )
A.2 B.﹣2 C.1 D.﹣1
【考點】絕對值;相反數(shù).
【分析】根據(jù)互為相反數(shù)的`定義,知a=﹣1,從而求解.
互為相反數(shù)的定義:只有符號不同的兩個數(shù)叫互為相反數(shù).
【解答】解:根據(jù)a與1互為相反數(shù),得
a=﹣1.
所以|a|=1.
故選C.
【點評】此題主要是考查了相反數(shù)的概念和絕對值的性質(zhì).
9.若|1﹣a|=a﹣1,則a的取值范圍是( )
A.a>1 B.a≥1 C.a<1 D.a≤1
【考點】絕對值.
【分析】根據(jù)|1﹣a|=a﹣1得到1﹣a≤0,從而求得答案.
【解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故選B.
【點評】本題考查了絕對值的求法,解題的關(guān)鍵是了解非正數(shù)的絕對值是它的相反數(shù),難度不大.
初一上冊數(shù)學有理數(shù)教案6
【學習目標】
1.掌握有理數(shù)的混合運算法則,并能熟練地進行有理數(shù)的加、減、乘、除、乘方的混合運算;
2.通過計算過程的反思,獲得解決問題的經(jīng)驗,體會在解決問題的過程中與他人合作的重要性;
【學習方法】
自主探究與合作交流相結(jié)合。
【學習重難點】
重點:能熟練地按照有理數(shù)的運算順序進行混合運算
難點:在正確運算的基礎上,適當?shù)貞眠\算律簡化運算
【學習過程】
模塊一預習反饋
一、學習準備
1.四則(加減乘除)混合運算的順序:先算_______,再算_______,如有括號,就先算__________.同級運算按照從___往___的順序依次計算。
2.有理數(shù)的運算定律:__________________________________________________.
3.請同學們閱讀教材p65—p66,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業(yè)。
《2.11有理數(shù)的混合運算》課后作業(yè)
9.用符號“>”“<”“=”填空.
42+32________2×4×3;
(-3)2+12________2×ok3w_ads("s002");
《2.11有理數(shù)的混合運算》同步練習
5、小亮的.爸爸在一家合資企業(yè)工作,月工資2500元,按規(guī)定:其中800元是免稅的,其余部分要繳納個人所得稅,應納稅部分又要分為兩部分,并按不同稅率納稅,即不超過500元的部分按5%的稅率;超過500元不超過20xx元的部分則按10%的稅率,你能算出小亮的爸爸每月要繳納個人所得稅多少元?
初一上冊數(shù)學有理數(shù)教案7
一、知識要點
本章的主要內(nèi)容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、大于0的數(shù)叫做正數(shù)。
2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)。
3、0既不是正數(shù)也不是負數(shù)。
4、有理數(shù)(rationalnumber):正整數(shù)、負整數(shù)、0、正分數(shù)、負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。
5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。
數(shù)軸滿足以下要求:
(1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);
(2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
(3)選取適當?shù)拈L度為單位長度。
6、相反數(shù)(oppositenumber):絕對值相等,只有負號不同的兩個數(shù)叫做互為相反數(shù)。
7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。
由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);兩個負數(shù),絕對值大的反而小。
8、有理數(shù)加法法則
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0.
(3)一個數(shù)同0相加,仍得這個數(shù)。
加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的'位置,和不變。表達式:a+b=b+a。
加法結(jié)合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數(shù)減法法則
減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達式:a-b=a+(-b)
10、有理數(shù)乘法法則
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
任何數(shù)同0相乘,都得0.
乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達式:ab=ba
乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數(shù)
1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。
12、有理數(shù)除法法則:兩數(shù)相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.
13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。
根據(jù)有理數(shù)的乘法法則可以得出:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
14、有理數(shù)的混合運算順序
(1)“先乘方,再乘除,最后加減”的順序進行;
(2)同級運算,從左到右進行;
(3)如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。
15、科學技術(shù)法:把一個大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0
16、近似數(shù)(approximatenumber):
17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。
拓展知識:
1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。
一、(1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;
二、(2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。
2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負數(shù)。
4、比較兩個有理數(shù)大小的方法有:
(1)根據(jù)有理數(shù)在數(shù)軸上對應的點的位置直接比較;
(2)根據(jù)規(guī)定進行比較:兩個正數(shù);正數(shù)與零;負數(shù)與零;正數(shù)與負數(shù);兩個負數(shù),體現(xiàn)了分類討論的數(shù)學思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基礎訓練
選擇題
1、下列運算中正確的是().
A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9
2、下列各判斷句中錯誤的是()
A.數(shù)軸上原點的位置可以任意選定
B.數(shù)軸上與原點的距離等于個單位的點有兩個
C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示
D.數(shù)軸上無論怎樣靠近的兩個表示有理數(shù)的點之間,一定還存在著表示有理數(shù)的點。
3、、是有理數(shù),若>且,下列說法正確的是()
A.一定是正數(shù)B.一定是負數(shù)C.一定是正數(shù)D.一定是負數(shù)
4、兩數(shù)相加,如果比每個加數(shù)都小,那么這兩個數(shù)是()
A.同為正數(shù)B.同為負數(shù)C.一個正數(shù),一個負數(shù)D.0和一個負數(shù)
5、兩個非零有理數(shù)的和為零,則它們的商是()
A.0B.-1C.+1D.不能確定
6、一個數(shù)和它的倒數(shù)相等,則這個數(shù)是()
A.1B.-1C.±1D.±1和0
7、如果|a|=-a,下列成立的是()
A.a>0B.a<0c.a>0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4個礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列說法中,正確的個數(shù)是()
⑴任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示
、茢(shù)軸上的每一個點都表示一個有理數(shù)
⑶任何有理數(shù)的絕對值都不可能是負數(shù)
、让總有理數(shù)都有相反數(shù)
A、1B、2C、3D、4
11、如果一個數(shù)的相反數(shù)比它本身大,那么這個數(shù)為()
A、正數(shù)B、負數(shù)
C、整數(shù)D、不等于零的有理數(shù)
12、下列說法正確的是()
A、幾個有理數(shù)相乘,當因數(shù)有奇數(shù)個時,積為負;
B、幾個有理數(shù)相乘,當正因數(shù)有奇數(shù)個時,積為負;
C、幾個有理數(shù)相乘,當負因數(shù)有奇數(shù)個時,積為負;
D、幾個有理數(shù)相乘,當積為負數(shù)時,負因數(shù)有奇數(shù)個;
填空題
1、在有理數(shù)-7,,-(-1.43),,0,,-1.7321中,是整數(shù)的有_____________是負分數(shù)的有_______________。
2、一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的距離是____個單位長度。
3、如果一個數(shù)是6位整數(shù),用科學記數(shù)法表示它時,10的指數(shù)是_____;用科學記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是___________.
4、實數(shù)a、b、c在數(shù)軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.
5、絕對值大于1而小于4的整數(shù)有_____________________________________,其和為___________.
6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+20xx-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是_____________.
10、用四舍五入法把3.1415926精確到千分位是,用科學記數(shù)法表示302400,應記為,近似數(shù)3.0×精確到位。
11、正數(shù)–a的絕對值為__________;負數(shù)–b的絕對值為________
12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大
13、在數(shù)軸上表示兩個數(shù),的數(shù)總比的大。(用“左邊”“右邊”填空)
14、數(shù)軸上原點右邊4.8厘米處的點表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點表示的有理數(shù)是____________。
三、強化訓練
1、計算:1+2+3+…+20xx+2003=__________.
2、已知:若(a,b均為整數(shù))則a+b=
3、觀察下列等式,你會發(fā)現(xiàn)什么規(guī)律:,,,。。。請將你發(fā)現(xiàn)的規(guī)律用只含一個字母n(n為正整數(shù))的等式表示出來
4、已知,則___________
5、已知是整數(shù),是一個偶數(shù),則a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在數(shù)1,2,3,…,50前添“+”或“-”,并求它們的和,所得結(jié)果的最小非負數(shù)是多少?請列出算式解答。
8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。
9、如果規(guī)定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。
10、已知|x+1|=4,(y+2)2=4,求x+y的值。
11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。
例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):
星期一二三四五
每股漲跌+4+4.5-1-2.5-6
第1章(1)星期三收盤時,每股是多少元?
第2章(2)本周內(nèi)最高價是每股多少元?最低價是多少元?
第3章(3)已知買進股票是付了1.5‰的手續(xù)費,賣出時需付成交額1.5‰的手續(xù)費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?
第4章(4)以買進的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。
四、競賽訓練:
1、最小的非負有理數(shù)與最大的非正有理數(shù)的和是
2、乘積=
3、比較大。篈=,B=,則A B
4、滿足不等式104≤A≤105的整數(shù)A的個數(shù)是x×104+1,則x的值是( )
A、9 B、8 C、7 D、6
5、最小的一位數(shù)的質(zhì)數(shù)與最小的兩位數(shù)的質(zhì)數(shù)的積是( )
A、11 B、22 C、26 D、33
6、比較
7、計算:
8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com
9、計算:
10、計算
11、計算1+3+5+7+…+1997+1999的值
12、計算1+5+52+53+…+599+5100的值.
13、有理數(shù)均不為0,且設試求代數(shù)式20xx之值。
14、已知a、b、c為實數(shù),且,求的值。
15、已知:。
16、解方程組。
17、若a、b、c為整數(shù),且,求的值。
1.2.1有理數(shù)
七年級上(1.1正數(shù)和負數(shù),1.2有理數(shù))
1.2有理數(shù)
初一上冊數(shù)學有理數(shù)教案8
教學目標:
1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;
2、能體會引進負數(shù)的必要性和意義,建立正數(shù)和負數(shù)的數(shù)感。
重點:通過列舉現(xiàn)實世界中的“相反意義的量”的例子來引進正數(shù)和負數(shù),要求學生理解正數(shù)和負數(shù)的意義,為以后通過實例引進有理數(shù)的大小比較、加法和乘法法則打基礎。
難點:對負數(shù)的意義的理解。
教學過程:
一、知識導向:本節(jié)課是一個從小學過渡的知識點,主要是要抓緊在數(shù)范圍上擴充,對引進“負數(shù)”這一概念的必要性及意義的理解。
二、新課拆析:1、回顧小學中有關(guān)數(shù)的范圍及數(shù)的分類,指出小學中的“數(shù)”是為了滿足生產(chǎn)和生活的需要而產(chǎn)生發(fā)展起來的'。如:0,1,2,3,…,,
2、能讓學生舉例出更多的有關(guān)生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的對立面。
如:汽車向東行駛3千米和向西行駛2千米
溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會發(fā)現(xiàn):如果只用原來所學過的數(shù)很難區(qū)分具有相反意義的量。
一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學過的數(shù)表示;把與它意義相反的量規(guī)定為負的,用過去學過的數(shù)(零除外)前面放上一個“—”號來表示。
如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負數(shù),如:-3,-45,…過去學過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負數(shù),1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓練:P18練習:1,2,3,4。
四、知識小結(jié):
從本節(jié)課所學的內(nèi)容中,應能從數(shù)的角度來區(qū)分小學與初中的異同點,通過運用發(fā)現(xiàn)相反意義量,能理解引進“負數(shù)”的必要性及其意義。
五、作業(yè)鞏固:
1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數(shù)來表示; 2、分別舉出幾個正數(shù)與負數(shù)(最少6個)。 3、P20習題2.1:1題。
初一上冊數(shù)學有理數(shù)教案9
一、目的要求
1、使學生了解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會進行有理數(shù)的除法運算。
2、使學生理解有理數(shù)倒數(shù)的意義,能熟練地進行有理數(shù)乘除混合運算。
二、內(nèi)容分析
有理數(shù)除法的學習是學生在小學已掌握了倒數(shù)的意義,除法的意義和運算法則,乘除的混合運算法則,知道0不能作除數(shù)的規(guī)定和在中學已學過有理數(shù)乘法的基礎上進行的。因而教材首先根據(jù)除法的意義計算一個具體的有理數(shù)除法的實例,得出有理數(shù)除法可以利用乘法來進行的結(jié)論,進而指出有理數(shù)范圍內(nèi)倒數(shù)的定義不變,這樣,就得出了有理數(shù)除法法則。接下來,通過幾個實例說明有理數(shù)除法法則,并根據(jù)除法與乘法的關(guān)系,進一步得到了與乘法類似的法則。最后,通過幾個例題的教學,既說明了有理數(shù)除法的另一種形式,也指出了除法與分數(shù)互化的關(guān)系,同時,還指出有理數(shù)的除法化成有理數(shù)的乘法以后,可以利用有理數(shù)乘法的運算性質(zhì)簡化運算,這樣,就說明了有理數(shù)乘除的混合運算法則。
本節(jié)課的重點是除法法則和倒數(shù)概念;難點是對零不能作除數(shù)與零沒有倒數(shù)的理解以及乘法與除法的互化,關(guān)鍵是,實際運算時,先確定商的符號,然后再根據(jù)不同情況采取適當?shù)姆椒ㄇ笊痰慕^對值,因而教學時,要讓學生通過實例理解有理數(shù)除法與小學除法法則基本相同,只是增加了符號的變化。
三、教學過程
復習提問:
1、小學學過的倒數(shù)意義是什么?4和的倒數(shù)分別是什么?0為什么沒有倒數(shù)。
答:乘積是1的兩個數(shù)互為倒數(shù),4的倒數(shù)是,的倒數(shù)是,0沒有倒數(shù)是因為沒有一個數(shù)與0相乘等于1等于。
2、小學學過的除法的意義是什么?10÷5是什么意思?商是幾?0÷5呢?
答:除法是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算,15÷5表示一個數(shù)與5的積是15,商是3,0÷5表示一個數(shù)與5的`積是0,商是0。
3、小學學過的除法和乘法的關(guān)系是什么?
答:除以一個數(shù)等于乘上這個數(shù)的倒數(shù)。
4、5÷0=?0÷0=?
答:0不能作除數(shù),這兩個除式?jīng)]有意義。
新課講解:
與小學學過的一樣,除法是乘法的逆運算,這里與小學不同的是,被除數(shù)和除數(shù)可以是任意有理數(shù)(零作除數(shù)除外)。
引例:計算:8×(-)和8÷(-4)
8×(-)=-2,
8÷(-4),由除法的意義,就是要求一個數(shù),使它與-4相乘,積為8,
∵(-4)×(-2)=8,
∴8÷(-4)=-2。
從而,8÷(-4)=8×(-),
同樣,有(-8)÷4=(-8)×,
(-8)÷(-4)=(-8)×(-),
這說明,有理數(shù)除法可以利用乘法來進行。
又(-4)×=-1,4×=1,
由4和互為倒數(shù),說明(-4)和(-)也互為倒數(shù)。
從而對于有理數(shù)仍然有:乘積為1的兩個數(shù)互為倒數(shù)。
提問:-2,-1的倒數(shù)各是什么?為什么?
注意:求一個整數(shù)的倒數(shù),直接寫成這個數(shù)的數(shù)分之一即可,求一個分數(shù)的倒數(shù),只要把分子分母顛倒一下即可,一般地,a(a≠0)的倒數(shù)是,0沒有倒數(shù)。
由上面的引例和倒數(shù)的意義,可得到與小學一樣的有理數(shù)除法法則,則教科書第101頁方框里的黑體字,用式子表示,就是a÷b=a·(b≠0)。
注意:有理數(shù)除法法則也表示了有理數(shù)除法和有理數(shù)乘法可以互相轉(zhuǎn)化的關(guān)系,與小學一樣,也規(guī)定:0不能作除數(shù)。
例1計算。(見教科書第103頁例1)
解答過程見教科書第103頁例1。
閱讀教科書第102頁至第103頁。
課堂練習:教科書第104頁練習第l,2,3題。
提問:l、正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù),零的倒數(shù)是零,這句話正確嗎?
(答:略)
2、兩數(shù)相除,商的符號如何確定?為什么?商的'絕對值呢?
答:商的符號由兩個數(shù)的符號確定,因為除以一個數(shù)等于乘以這個數(shù)的倒數(shù),當兩個不等于零的數(shù)互為倒數(shù)時,它們的符號相同。故兩數(shù)相除,仍是同號得正,異號得負,商的絕對值則可由兩數(shù)的絕對值相除而得到。
從上所述,可得到有理數(shù)除法與乘法類似的法則,見教科書第102頁上的黑體字。
在進行有理數(shù)除法運算時,既可以利用乘法(把除數(shù)化為它的倒數(shù)),也可以直接(特別是在能整除時)進行,具體利用哪種方式,根據(jù)情況靈活選用。
例2見教科書第104頁例2。
解答過程見教科書第104頁例2。
注意:除法可以表示成分數(shù)和比的形式。如84÷(-7)可以寫成或84:(-7);反過來,分數(shù)和比也可以化為除法,如可以寫成(-12)÷3,15:6可以寫成15÷6。這說明,除法、分數(shù)和比相互可以互相轉(zhuǎn)化,并且通過這種轉(zhuǎn)化,常常可以簡化計算。
例3見教科書第105頁例3。
分析:(l)有兩種算法,一是將寫成,然后用除法法則或利用乘法進行計算;二是將寫成24+,然后利用分配律進行計算。
對于(2),是乘除混合運算,可以接從左到右的順序依次計算,也可以把除法化為乘法,按乘法法則運算。
解答過程見教科書第105頁例3。
講解教科書例3后的兩個注意點。
課堂練習:見教科書第105頁練習。
第1題可直接約分,也可化為除法。
第2題可先化成乘法,并利用乘法的運算律簡化運算。
課堂小結(jié):
閱讀教科書第102頁至第105頁上的內(nèi)容,理解倒數(shù)的意義,除法法則的兩種形式及教材上的注意點。
提問:(l)倒數(shù)的意義是什么?有理數(shù)除法法則是什么?如何進行有理數(shù)的除法運算?(兩種形式)如何進行有理數(shù)乘除混合運算?
(2)0能作除數(shù)嗎?什么數(shù)的倒數(shù)是它本身?的倒數(shù)是什么?(a≠0)
四、課外作業(yè)
習題2、9A組第1,2,3,4,5題的雙數(shù)小題,第6題。
選作題:習題2、9B組第1,2,3題雙數(shù)小題。
【初一上冊數(shù)學有理數(shù)教案】相關(guān)文章:
初一上冊數(shù)學《有理數(shù)》教案12篇01-13
初一上冊數(shù)學《有理數(shù)》教案(12篇)01-14
初一上冊數(shù)學有理數(shù)教案匯編9篇01-30
初一上冊數(shù)學《有理數(shù)》教案合集12篇01-14